cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A106747 Replace each odd digit d of n with (d-1)/2 and each even digit d with d/2.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 30, 30, 31, 31, 32, 32
Offset: 0

Views

Author

Zak Seidov, May 12 2005

Keywords

Comments

Terms are repeated. Differs from A004526 and A021895 starting with a(11)=0, A004526(11)=A021895(11)=5.

Crossrefs

Programs

  • Haskell
    a106747 n = if n == 0 then 0 else 10 * (a106747 n') + div d 2
                where (n', d) = divMod n 10
    -- Reinhard Zumkeller, Jan 14 2015
    
  • Mathematica
    a[n_]:=FromDigits[Map[If[Mod[ #, 2]==1, (#-1)/2, #/2]&, IntegerDigits[n]]];Table[a[n], {n, 0, 100}]
  • Python
    def A106747(n): return int(str(n).translate({49:48,50:49,51:49,52:50,53:50,54:51,55:51,56:52,57:52})) # Chai Wah Wu, Apr 07 2022

A113675 Decimal expansion of 1/8991.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4
Offset: 0

Views

Author

Daisuke Minematsu and Ryohei Miyadera, Jan 17 2006

Keywords

Comments

1/(89...91) can produce this kind of sequence infinitely.

Examples

			0.00011122233344455566677788900011...
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See pp. 60, 308.

Crossrefs

Programs

  • Mathematica
    m = 17; Sqrt[Apply[Plus, 576*Table[(10^3)^k, {k, 0, m}]]]
    Join[{0,0,0},RealDigits[1/8991,10,120][[1]]] (* Harvey P. Dale, Apr 22 2012 *)

Formula

sqrt(576576576576576576576576576576576576576576576576576576) = 72*sqrt(111222333444555666777889000111222333444555666777889).
G.f.: x^3*(Sum_{i=0..27} floor((i+3)/3)*x^i + x^23 - 9*x^24*(1 + x + x^2 + 10*x^3/9))/(1 - x^27). - Stefano Spezia, Jul 31 2024

A113694 Decimal expansion of 10/44955.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8, 0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8, 0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8, 0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8
Offset: 0

Views

Author

Daisuke Minematsu and Ryohei Miyadera, Jan 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[10/44955,10,120][[1]]] (* Harvey P. Dale, May 13 2012 *)

A113657 Decimal expansion of 1/1089.

Original entry on oeis.org

0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6
Offset: 0

Views

Author

Ryohei Miyadera, Jan 16 2006

Keywords

Comments

This sequence can also be produced by Sqrt[11111111111111111111111111111111111111111111] =11*Sqrt[91827364554637281910009182736455463728191], where Sqrt is the square root. In fact we found this from the square root and later looked for the same sequence in the expansion.
Comment from Eric Desbiaux, Apr 08 2008: Also, of course, decimal expansion of 9/9801. Note that
99/9801 = 0.0101010101010101010101...,
9999/9801 = 1.02020202020202020202020...,
999999/9801 = 102.0303030303030303030303...,
99999999/9801 = 10203.040404040404040404040404..., etc.

Examples

			0.0009182736455463728191000918273645546372819100091827364554...
		

Crossrefs

Programs

  • Mathematica
    m = 21; Sqrt[Apply[Plus, Table[11*100^k, {k, 0, m}]]]

Extensions

Edited by N. J. A. Sloane, May 15 2008, at the suggestion of R. J. Mathar.

A113818 Decimal expansion of the integer (101101101101101101101101101)/9.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 9, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 9
Offset: 26

Views

Author

Ryohei Miyadera and Daisuke Minematsu, Jan 23 2006

Keywords

Comments

Using square roots and periodic numbers you can produce this kind of curious sequence.

Examples

			(101101101101101101101101101)/9 = 11233455677900122344566789.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[101101101101101101101101101/9,10,26][[1]] (* Harvey P. Dale, May 21 2020 *)

Formula

(101101101101101101101101101)/9 or Sqrt[101101101101101101101101101], where sqrt is the square root.

Extensions

Edited by N. J. A. Sloane, May 26 2006
Previous Mathematica program replaced by Harvey P. Dale, May 21 2020

A114054 Decimal expansion of 998998998998998998998998998/9.

Original entry on oeis.org

1, 1, 0, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2
Offset: 27

Views

Author

Satoshi Hashiba and Ryohei Miyadera, Feb 02 2006

Keywords

Comments

We have found out that we can generate many interesting sequences with periodic numbers and square roots.

Crossrefs

Programs

  • Mathematica
    {998998998998998998998998998/9,Sqrt[998998998998998998998998998]}

Formula

998998998998998998998998998/9 or sqrt(998998998998998998998998998)=3*sqrt(110999888777666555444333222), where sqrt is the square root.

A115595 The sequence 11,0,1,3333,2,3,5555,4,5,7777,6,7,9999,9,0,2222,1,2,4444,3,4,6666,5,6,8888,7,9,11 has three subsequences that have interesting patterns inside it. Namely, 11,0,(1),3333,2,(3),5555,4,(5),7777,6,(7),9999,9,(0),2222,1,(2),4444,3,(4),6666,5,(6),8888,7,(9),11.

Original entry on oeis.org

11, 0, 1, 3333, 2, 3, 5555, 4, 5, 7777, 6, 7, 9999, 9, 0, 2222, 1, 2, 4444, 3, 4, 6666, 5, 6, 8888, 7, 9, 11
Offset: 1

Views

Author

Satoshi Hashiba (fantasia_sato205(AT)kcc.zaq.ne.jp), Mar 10 2006

Keywords

Comments

You can generate very interesting sequences by using periodic numbers and the square root.

Crossrefs

Programs

  • Mathematica
    Sqrt[991199991199991199991199991199991199991199991199991199]

Formula

You can get this sequence by Sqrt[991199991199991199991199991199991199991199991199991199], where Sqrt is the square root. Or (991199991199991199991199991199991199991199991199991199)/9.
Showing 1-7 of 7 results.