A022086 Fibonacci sequence beginning 0, 3.
0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
-
Maple
BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L),BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007 with (combinat):seq(sum((fibonacci(n,1)),m=1..3),n=0..32); # Zerinvary Lajos, Jun 19 2008
-
Mathematica
LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *) Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *) Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *)
-
PARI
a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014
-
SageMath
def A022086(n): return 3*fibonacci(n) print([A022086(n) for n in range(41)]) # G. C. Greubel, Apr 10 2025
Formula
a(n) = 3*Fibonacci(n).
a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016
E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016
a(n) = F(n+4) + F(n-4) - 4*F(n), F = A000045. - Bruno Berselli, Dec 29 2016
Comments