cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022088 Fibonacci sequence beginning 0, 5.

Original entry on oeis.org

0, 5, 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, 720, 1165, 1885, 3050, 4935, 7985, 12920, 20905, 33825, 54730, 88555, 143285, 231840, 375125, 606965, 982090, 1589055, 2571145, 4160200, 6731345, 10891545, 17622890, 28514435, 46137325, 74651760, 120789085
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, pp. 15, 34, 52.

Crossrefs

Cf. sequences of the form m*Fibonacci listed in A022086.

Programs

Formula

a(n) = round( (2*phi-1)*phi^n ) for n>3. - Thomas Baruchel, Sep 08 2004
a(n) = 5*Fibonacci(n).
a(n) = A119457(n+3,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 5*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n+2) = A014217(n+4) - A014217(n). - Paul Curtz, Dec 22 2008
a(n) = sqrt(5*(A000032(n)^2 - 4*(-1)^n)). - Alexander Samokrutov, Sep 02 2015
From Tom Copeland, Jan 25 2016: (Start)
The o.g.f. for the shifted series b(0)=0 and b(n) = a(n+1) is G(x) = 5*x*(1+x)/(1-x*(1+x)) = 5 L(-Cinv(-x)), where L(x) = x/(1-x) with inverse Linv(x) = x/(1+x) and Cinv(x) = x*(1-x), the inverse of the o.g.f. for the shifted Catalan numbers of A000108, C(x) = (1-sqrt(1-4*x))/2. Then Ginv(x) = -C(-Linv(x/5)) = (-1 + sqrt(1+4*x/(5+x)))/2.
a(n+1) = 5*Sum_{k=0..n} binomial(n-k,k) = 5 * A000045(n+1), from A267633, with the convention for zeros of the binomial assumed there. (End)
For n > 0, 1/a(n) = Sum_{k>=1} F(n*k)/(L(n+1)^(k+1)), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Oct 26 2022