A022811
Number of terms in n-th derivative of a function composed with itself 3 times.
Original entry on oeis.org
1, 1, 3, 6, 13, 23, 44, 74, 129, 210, 345, 542, 858, 1310, 2004, 2996, 4467, 6540, 9552, 13744, 19711, 27943, 39452, 55172, 76865, 106200, 146173, 199806, 272075, 368247, 496642, 666201, 890602, 1184957, 1571417, 2075058, 2731677, 3582119, 4683595, 6102256
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
From _Gus Wiseman_, Jul 19 2018: (Start)
Using the chain rule, we compute the second derivative of f(f(f(x))) to be the following sum of a(2) = 3 terms.
d^2/dx^2 f(f(f(x))) =
f'(f(x)) f'(f(f(x))) f''(x) +
f'(x)^2 f'(f(f(x))) f''(f(x)) +
f'(x)^2 f'(f(x))^2 f''(f(f(x))).
(End)
- W. C. Yang, Derivatives of self-compositions of functions, preprint, 1997.
Cf.
A008778,
A022812,
A022813,
A022814,
A022815,
A022816,
A022817,
A024207,
A024208,
A024209,
A024210,
A131408.
-
A022811 := proc(n) local a,P,p,lp ; a := 0 ; P := combinat[partition](n) ; for p in P do lp := nops(p) ; a := a+combinat[numbpart](lp) ; od: RETURN(a) ; end: for n from 1 do print(n,A022811(n)) ; od: # R. J. Mathar, Aug 12 2008
-
a[n_] := Total[PartitionsP[Length[#]]& /@ IntegerPartitions[n]];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 80}] (* Jean-François Alcover, Apr 28 2017 *)
Table[Length[1+D[f[f[f[x]]],{x,n}]]-1,{n,10}] (* Gus Wiseman, Jul 19 2018 *)
Typo corrected by Neven Juric, Mar 25 2013
A022818
Square array read by antidiagonals: A(n,k) = number of terms in the n-th derivative of a function composed with itself k times (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 13, 7, 1, 1, 6, 15, 26, 23, 11, 1, 1, 7, 21, 45, 55, 44, 15, 1, 1, 8, 28, 71, 110, 121, 74, 22, 1, 1, 9, 36, 105, 196, 271, 237, 129, 30, 1, 1, 10, 45, 148, 322, 532, 599, 468, 210, 42, 1, 1, 11, 55, 201, 498, 952, 1301, 1309, 867, 345, 56, 1
Offset: 1
Square array A(n,k) (with rows n >= 1 and columns k >= 1) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 6, 10, 15, 21, 28, 36, ...
1, 5, 13, 26, 45, 71, 105, 148, ...
1, 7, 23, 55, 110, 196, 322, 498, ...
1, 11, 44, 121, 271, 532, 952, 1590, ...
1, 15, 74, 237, 599, 1301, 2541, 4586, ...
1, 22, 129, 468, 1309, 3101, 6539, 12644, ...
...
- Winston C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
- Alois P. Heinz, Antidiagonals n = 1..141
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Winston C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245. [Take the transpose of Table 2 on p. 241 and omit row 0 and column 0; A(n,k) = M(k,n). - _Petros Hadjicostas_, May 30 2020]
-
A:= proc(n, k) option remember;
`if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
end:
b:= proc(n, i, k) option remember; `if`(nAlois P. Heinz, Aug 18 2012
# second Maple program:
b:= proc(n, i, l, k) option remember; `if`(k=0,
`if`(n<2, 1, 0), `if`(n=0 or i=1, b(l+n$2, 0, k-1),
b(n, i-1, l, k) +b(n-i, min(n-i, i), l+1, k)))
end:
A:= (n, k)-> b(n$2, 0, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 19 2018
-
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k-j], {j, 0, Min[n/i, k]}]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
-
P(n, k) = #partitions(n-k, k); /* A008284 */
tabl(nn) = {M = matrix(nn, nn, n, k, 0); for(n=1, nn, M[n, 1] = 1; ); for(n=1, nn, for(k=2, nn, M[n, k] = sum(s=1, n, P(n, s)*M[s, k-1]))); for (n=1, nn, for (k=1, nn, print1(M[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 30 2020
A022817
Number of terms in 7th derivative of a function composed with itself n times.
Original entry on oeis.org
1, 15, 74, 237, 599, 1301, 2541, 4586, 7785, 12583, 19536, 29327, 42783, 60893, 84827, 115956, 155873, 206415, 269686, 348081, 444311, 561429, 702857, 872414, 1074345, 1313351, 1594620, 1923859, 2307327, 2751869, 3264951, 3854696, 4529921, 5300175, 6175778
Offset: 1
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
a:= n-> n*(36+(-356+(645+(355+(39+n)*n)*n)*n)*n)/720:
seq(a(n), n=1..40); # Alois P. Heinz, Aug 18 2012
-
Table[(n/720*(n^5+39*n^4+355*n^3+645*n^2-356*n+36)),{n,1,100}] (* Vincenzo Librandi, Aug 18 2012 *)
Showing 1-3 of 3 results.
Comments