A023001 a(n) = (8^n - 1)/7.
0, 1, 9, 73, 585, 4681, 37449, 299593, 2396745, 19173961, 153391689, 1227133513, 9817068105, 78536544841, 628292358729, 5026338869833, 40210710958665, 321685687669321, 2573485501354569, 20587884010836553, 164703072086692425
Offset: 0
Examples
From _Zerinvary Lajos_, Jan 14 2007: (Start) Octal.............decimal 0....................0 1....................1 11...................9 111.................73 1111...............585 11111.............4681 111111...........37449 1111111.........299593 11111111.......2396745 111111111.....19173961 1111111111...153391689 etc. ...............etc. (End) a(4) = (8^4 - 1)/7 = 585 = 1111_8 = (2^4 - 1) * (4^4 + 2^4 + 1)/7 = 15 * 273/7 = 15 * 39. - _Bernard Schott_, May 01 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences. - _Wolfdieter Lang_, Oct 18 2010
- Kival Ngaokrajang, Illustration of initial terms
- Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
- Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Eric Weisstein's World of Mathematics, Repunit.
- Index entries for linear recurrences with constant coefficients, signature (9,-8).
Programs
-
GAP
A023001:=List([0..10^2],n->(8^n-1)/7); # Muniru A Asiru, Oct 03 2017
-
Magma
[(8^n-1)/7: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
-
Maple
a:=n->sum(8^(n-j),j=1..n): seq(a(n), n=0..20); # Zerinvary Lajos, Jan 04 2007
-
Mathematica
Table[(8^n-1)/7, {n, 0, m}] LinearRecurrence[{9,-8},{0,1},30] (* Harvey P. Dale, Feb 12 2015 *)
-
Maxima
A023001(n):=floor((8^n-1)/7)$ makelist(A023001(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=(8^n-1)/7 \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[lucas_number1(n,9,8) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
-
Sage
[gaussian_binomial(n,1,8) for n in range(0,21)] # Zerinvary Lajos, May 28 2009
Formula
Also sum of cubes of divisors of 2^(n-1): a(n) = A001158(A000079(n-1)). - Labos Elemer, Apr 10 2003 and Farideh Firoozbakht, Jun 13 2003
a(n) = A033138(3n-2). - Alexandre Wajnberg, May 31 2005
From Philippe Deléham, Oct 12 2006: (Start)
a(0) = 0, a(n) = 8*a(n-1) + 1 for n>0.
G.f.: x/((1-8x)*(1-x)). (End)
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = 7*a(n-1) + 8*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 8*a(n-1) + a(n-2) - 8*a(n-3) = 9*a(n-1) - 8*a(n-2), a(0)=0, a(1)=1, a(2)=9. Observation by Gary Detlefs. See the W. Lang comment and link. (End)
a(n) = Sum_{k=0..n-1} 8^k. - Doug Bell, May 26 2017
E.g.f.: exp(x)*(exp(7*x) - 1)/7. - Stefano Spezia, Mar 11 2023
Comments