cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A171517 Primes p such that 2*p+11 is prime.

Original entry on oeis.org

3, 13, 31, 43, 73, 109, 151, 163, 181, 193, 199, 211, 223, 283, 331, 349, 373, 379, 409, 421, 433, 463, 499, 541, 571, 601, 613, 619, 643, 709, 739, 769, 823, 829, 883, 991, 1009, 1021, 1039, 1051, 1063, 1129, 1213, 1231, 1291, 1303, 1423, 1453, 1471, 1549
Offset: 1

Views

Author

Keywords

Examples

			2*3+11=17, which is prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | IsPrime(2*p+11)]; // Vincenzo Librandi, Apr 27 2014
  • Mathematica
    Select[Prime[Range[6! ]],PrimeQ[2*#+11]&]

A023245 Primes that remain prime through 2 iterations of the function f(x) = 2x + 9.

Original entry on oeis.org

5, 11, 19, 31, 59, 61, 71, 101, 109, 151, 179, 239, 241, 269, 281, 389, 409, 439, 449, 521, 571, 641, 659, 719, 829, 911, 971, 1051, 1061, 1181, 1201, 1229, 1319, 1361, 1439, 1579, 1669, 1699, 1741, 1831, 1949, 2269, 2341, 2371, 2521, 2549, 2579, 2609, 2671
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+9 and 4*n+27 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023207 and A155722.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(2*n+9) and IsPrime(4*n+27)] // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime[Range[500]],And@@PrimeQ[Rest[NestList[2#+9&,#,2]]]&]  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    isok(n) = isprime(n) && isprime(2*n+9) && isprime(4*n+27); \\ Michel Marcus, Sep 12 2016

A290839 a(n) = smallest prime p such that 2p + 2n - 1 is prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 3, 2, 7, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 13, 3, 2, 3, 2, 11, 3, 2, 5, 7, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 13, 7, 11, 5, 19, 3, 2, 3, 2, 5, 3, 2, 2, 7, 5, 5, 3, 2, 2, 7, 3, 2, 13, 3, 2, 3, 2, 7, 3, 2
Offset: 0

Views

Author

XU Pingya, Aug 12 2017

Keywords

Crossrefs

Cf. A067076 (indices n at which a(n) = 2).

Programs

  • Mathematica
    Table[j=0; found=False; While[!found, j++; found=PrimeQ[2Prime[j]+2n-1]]; Prime[j], {n, 85}]
  • PARI
    a(n) = {my(p=2); while(!isprime(2*p+2*n-1), p = nextprime(p+1)); p;} \\ Michel Marcus, Aug 12 2017

Formula

a(-n) = A290838(n+1). - Iain Fox, Dec 14 2017

Extensions

a(0) prepended by Iain Fox, Dec 14 2017

A023276 Primes that remain prime through 3 iterations of function f(x) = 2x + 9.

Original entry on oeis.org

5, 11, 31, 71, 281, 521, 911, 1181, 2371, 2521, 3391, 3701, 4211, 4931, 5051, 7211, 7411, 8221, 8431, 8461, 8501, 8641, 8951, 9601, 9871, 10301, 11981, 12421, 13121, 13921, 14591, 16381, 16451, 16901, 16931, 17791, 17881, 19391, 19751, 21991, 23021
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+9, 4*p+27 and 8*p+63 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023207, A023245, and of A155722.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+9) and IsPrime(4*n+27) and IsPrime(8*n+63)] // Vincenzo Librandi, Aug 04 2010
    
  • Maple
    A023276:=n->`if`(isprime(n) and isprime(2*n+9) and isprime(4*n+27) and isprime(8*n+63), n, NULL): seq(A023276(n), n=1..10^5); # Wesley Ivan Hurt, Feb 11 2017
  • Mathematica
    Select[Prime@ Range@ 2600, Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 9 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 19 2016 *)
    Select[Prime[Range[3000]],AllTrue[Rest[NestList[2#+9&,#,3]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 01 2017 *)
  • PARI
    is(n)=isprime(n) && isprime(2*n+9) && isprime(4*n+27) && isprime(8*n+63) \\ Charles R Greathouse IV, Sep 20 2016

Formula

a(n) == 1 (mod 10) for n > 1. - John Cerkan, Sep 16 2016

A153145 Primes p such that 2*p + 19 is also prime.

Original entry on oeis.org

2, 5, 11, 17, 41, 47, 59, 89, 107, 131, 137, 149, 167, 191, 251, 269, 311, 317, 389, 401, 419, 431, 461, 467, 479, 521, 587, 599, 641, 677, 797, 809, 839, 857, 929, 941, 947, 977, 1031, 1061, 1097, 1109, 1181, 1187, 1229, 1301, 1307, 1319, 1361, 1367, 1409
Offset: 1

Views

Author

Vincenzo Librandi, Dec 19 2008

Keywords

Examples

			For n=2, 2*n+19 = 23 is prime, so 2 is in the sequence.
		

Crossrefs

Cf. A153143 (m and 2*m+19 are both prime), A005384 (Sophie Germain primes, m and 2*m+1 are both prime), A023204 (m and 2*m+3 are both prime), A023205 (m and 2*m+5 are both prime), A023206 (m and 2*m+7 are both prime), A023207 (m and 2*m+9 are both prime).

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | IsPrime(2*p+19)];
  • Mathematica
    Select[Prime[Range[2000]],PrimeQ[2 # + 19] &] (* Vincenzo Librandi, Oct 20 2012 *)

Extensions

Edited, corrected and extended by Klaus Brockhaus, Dec 22 2008

A171518 Primes p such that 3*p-+8 are primes.

Original entry on oeis.org

5, 7, 13, 17, 53, 73, 83, 113, 127, 157, 193, 223, 277, 347, 367, 433, 613, 647, 673, 743, 797, 907, 937, 1117, 1217, 1373, 1427, 1483, 1543, 1597, 1637, 1667, 1877, 1933, 2027, 2237, 2297, 2447, 2647, 2687, 2843, 3083, 3137, 3613, 3797, 4073, 4463, 4483
Offset: 1

Views

Author

Keywords

Examples

			5 is in the sequence since 3*5-8=7 and 3*5+8=23 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[7! ]],PrimeQ[3*#-8]&&PrimeQ[3*#+8]&]
    Select[Prime[Range[700]],AllTrue[3#+{8,-8},PrimeQ]&] (* Harvey P. Dale, Feb 10 2025 *)

A190354 Primes p such that p,q,r,s are consecutive primes and 2p+9, 2q+9, 2r+9, 2s+9 are also primes.

Original entry on oeis.org

887, 907, 4211, 6569, 8447, 23339, 23357, 30809, 33427, 33937, 38839, 57529, 57557, 57859, 70271, 77621, 77641, 77647, 77659, 80747, 86587, 87691, 109537, 115769, 116041, 117251, 160681, 192781, 207797, 217387, 228257, 228281, 232457, 244339
Offset: 1

Views

Author

Pierre CAMI, May 09 2011

Keywords

Comments

The smallest in a group of four consecutive primes in A023207. - R. J. Mathar, Jun 02 2011

Programs

  • Maple
    isA023207 := proc(n) isprime(n) and isprime(2*n+9) ; end proc:
    isA190354 := proc(n) local q,r,s ; if isprime(n) then q := nextprime(n) ; r := nextprime(q) ; s := nextprime(r) ; isA023207(n) and isA023207(q) and isA023207(r) and isA023207(s) ; else return false; end if; end proc:
    for i from 1 do p := ithprime(i) ; if isA190354(p) then print(p) ; end if; end do: # R. J. Mathar, Jun 02 2011
  • Mathematica
    p2Q[n_]:=And@@PrimeQ[2#+9&/@n]; Transpose[Select[Partition[Prime[ Range[22000]],4,1],p2Q]][[1]] (* Harvey P. Dale, Jun 10 2011 *)
  • PARI
    old(p,k)=while(k--,p=precprime(p-1));p; k=0;forprime(p=2, 1e6,if(isprime(p+p+9),if(k++>3,print1(old(p,4)", ")),k=0))
Showing 1-7 of 7 results.