A023896 Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.
1, 1, 3, 4, 10, 6, 21, 16, 27, 20, 55, 24, 78, 42, 60, 64, 136, 54, 171, 80, 126, 110, 253, 96, 250, 156, 243, 168, 406, 120, 465, 256, 330, 272, 420, 216, 666, 342, 468, 320, 820, 252, 903, 440, 540, 506, 1081, 384, 1029, 500, 816, 624, 1378, 486, 1100, 672
Offset: 1
Examples
G.f. = x + x^2 + 3*x^3 + 4*x^4 + 10*x^5 + 6*x^6 + 21*x^7 + 16*x^8 + 27*x^9 + ... a(12) = 1 + 5 + 7 + 11 = 24. n = 40: The smallest positive reduced residue system modulo 40 is {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}. The sum is a(40) = 320. Average is 20.
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
- David M. Burton, Elementary Number Theory, p. 171.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2001, p. 163.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
- Geoffrey B. Campbell, Dirichlet summations and products over primes, Int. J. Math. Math. Sci. 16 92) (1993) 359. eq. (3.1)
- Muhammed H. Islam and Shahriar Manzoor, φ1 and phitorial are injections, for any positive integer N, where N > 1.
- Constantin M. Petridi, The Sums of the k-powers of the Euler set and their connection with Artin's conjecture for primitive roots, arXiv:1612.07632 [math.NT], 2016.
- David Zmiaikou, Origamis and permutation groups, Thesis, 2011. See p. 65.
Crossrefs
Programs
-
Haskell
a023896 = sum . a038566_row -- Reinhard Zumkeller, Mar 04 2012
-
Magma
[1] cat [n*EulerPhi(n)/2: n in [2..70]]; // Vincenzo Librandi, May 16 2015
-
Maple
A023896 := proc(n) if n = 1 then 1; else n*numtheory[phi](n)/2 ; end if; end proc: # R. J. Mathar, Sep 26 2013
-
Mathematica
a[ n_ ] = n/2*EulerPhi[ n ]; a[ 1 ] = 1; Table[a[n], {n, 56}] a[ n_] := If[ n < 2, Boole[n == 1], Sum[ k Boole[1 == GCD[n, k]], { k, n}]]; (* Michael Somos, Jul 08 2014 *)
-
PARI
{a(n) = if(n<2, n>0, n*eulerphi(n)/2)};
-
PARI
A023896(n)=n*eulerphi(n)\/2 \\ about 10% faster. - M. F. Hasler, Feb 01 2021
-
Python
from sympy import totient def A023896(n): return 1 if n == 1 else n*totient(n)//2 # Chai Wah Wu, Apr 08 2022
-
SageMath
def A023896(n): return 1 if n == 1 else n*euler_phi(n)//2 print([A023896(n) for n in range(1, 57)]) # Peter Luschny, Dec 03 2023
Formula
a(n) = n*A023022(n) for n > 2.
a(n) = phi(n^2)/2 = n*phi(n)/2 = A002618(n)/2 if n > 1, a(1)=1. See the Apostol reference for this exercise.
a(n) = Sum_{1 <= k < n, gcd(k, n) = 1} k.
If n = p is a prime, a(p) = T(p-1) where T(k) is the k-th triangular number (A000217). - Robert G. Wilson v, Jul 31 2004
Equals A054521 * [1,2,3,...]. - Gary W. Adamson, May 20 2007
If m,n > 1 and gcd(m,n) = 1 then a(m*n) = 2*a(m)*a(n). - Thomas Ordowski, Nov 09 2014
G.f.: Sum_{n>=1} mu(n)*n*x^n/(1-x^n)^3, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 24 2015
G.f. A(x) satisfies A(x) = x/(1 - x)^3 - Sum_{k>=2} k * A(x^k). - Ilya Gutkovskiy, Sep 06 2019
Sum_{n>=1} 1/a(n) = 2 * A065484 - 1 = 3.407713... . - Amiram Eldar, Oct 09 2023
Extensions
Typos in programs corrected by Zak Seidov, Aug 03 2010
Name and example edited by Wolfdieter Lang, May 03 2015
Comments