cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A339529 Decimal expansion of Sum_{k>=1} (zeta(6*k)-1).

Original entry on oeis.org

0, 1, 7, 5, 9, 3, 0, 2, 6, 3, 8, 5, 3, 2, 1, 5, 7, 6, 2, 1, 3, 7, 5, 6, 6, 0, 4, 4, 9, 7, 9, 5, 5, 2, 0, 0, 2, 0, 6, 5, 0, 4, 3, 4, 9, 4, 8, 0, 7, 4, 7, 0, 9, 4, 9, 7, 3, 2, 4, 6, 9, 3, 0, 1, 6, 4, 3, 3, 2, 4, 3, 7, 4, 9, 8, 3, 2, 0, 9, 0, 1, 8, 6, 7, 6, 0, 6, 4, 4, 1, 8, 8, 0, 4, 7, 5, 9, 9, 5, 2, 1, 2, 0, 4, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 08 2020

Keywords

Examples

			0.017593026385321576213756604497955200206504349480747094973246930164332437...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[11/12 - Pi*Tanh[Sqrt[3]*Pi/2]/(2*Sqrt[3]), 10, 100][[1]]]

Formula

Equals Sum_{k>=2} 1/(k^6 - 1).
Equals 11/12 - Pi*tanh(sqrt(3)*Pi/2)/(2*sqrt(3)).

A024006 a(n) = 1 - n^8.

Original entry on oeis.org

1, 0, -255, -6560, -65535, -390624, -1679615, -5764800, -16777215, -43046720, -99999999, -214358880, -429981695, -815730720, -1475789055, -2562890624, -4294967295, -6975757440, -11019960575, -16983563040, -25599999999, -37822859360, -54875873535
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A024004.

Programs

Formula

Sum_{n>=2} -1/a(n) = 15/16 - Pi*(coth(Pi)/8) + Pi * (sin(sqrt(2)*Pi) + sinh(sqrt(2)*Pi)) / (4*sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))) = A339530 = 0.0040926982992862873... . - Vaclav Kotesovec, Feb 14 2015

A123866 a(n) = n^6 - 1.

Original entry on oeis.org

0, 63, 728, 4095, 15624, 46655, 117648, 262143, 531440, 999999, 1771560, 2985983, 4826808, 7529535, 11390624, 16777215, 24137568, 34012223, 47045880, 63999999, 85766120, 113379903, 148035888, 191102975, 244140624, 308915775, 387420488
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 7 = 0 iff n mod 7 > 0: a(A008589(n))=6; a(A047304(n)) = 0; a(n) mod 7 = 6*(1-A082784(n)).
a(n) = A005563(n-1)*A059826(n) = A068601(n)*A001093(n). - Reinhard Zumkeller, Feb 02 2007

Crossrefs

Programs

Formula

G.f.: x^2*(63 + 287*x + 322*x^2 + 42*x^3 + 7*x^4 - x^5)/(1-x)^7. - Colin Barker, May 08 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(1)=0, a(2)=63, a(3)=728, a(4)=4095, a(5)=15624, a(6)=46655, a(7)=117648. - Harvey P. Dale, Nov 18 2012
Sum_{n>=2} 1/a(n) = 11/12 - Pi*sqrt(3)*tanh(Pi*sqrt(3)/2)/6. - Vaclav Kotesovec, Feb 14 2015
E.g.f.: 1 + (-1 + x + 31*x^2 + 90*x^3 + 65*x^4 + 15*x^5 + x^6)*exp(x). - G. C. Greubel, Aug 08 2019
Product_{n>=2} (1 + 1/a(n)) = 6*Pi^2*sech(sqrt(3)*Pi/2)^2. - Amiram Eldar, Jan 20 2021

A002604 a(n) = n^6 + 1.

Original entry on oeis.org

1, 2, 65, 730, 4097, 15626, 46657, 117650, 262145, 531442, 1000001, 1771562, 2985985, 4826810, 7529537, 11390626, 16777217, 24137570, 34012225, 47045882, 64000001, 85766122, 113379905, 148035890
Offset: 0

Views

Author

Keywords

Comments

Because of Fermat's little theorem, a(n) is never divisible by 7. - Altug Alkan, Apr 08 2016

Crossrefs

Equals A001014 + 1. Cf. A024004, A002522.

Programs

Formula

G.f. (-1 + 5*x - 72*x^2 - 282*x^3 - 317*x^4 - 51*x^5 - 2*x^6) / (x - 1)^7. - R. J. Mathar, Aug 06 2012
Sum_{n>=0} 1/a(n) = 1/2 + Pi * (coth(Pi) + (sinh(Pi) + sqrt(3)*sin(sqrt(3)*Pi)) / (cosh(Pi) - cos(sqrt(3)*Pi))) / 6 = 1.5171007340332164261529... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 + Pi/(6*sinh(Pi)) + Pi * (sqrt(3)*cosh(Pi/2) * sin((sqrt(3)*Pi)/2) + cos((sqrt(3)*Pi)/2) * sinh(Pi/2)) / (3*(cosh(Pi) - cos(sqrt(3)*Pi))) = 0.514210347292695053493... . - Vaclav Kotesovec, Feb 14 2015

A024007 a(n) = 1 - n^9.

Original entry on oeis.org

1, 0, -511, -19682, -262143, -1953124, -10077695, -40353606, -134217727, -387420488, -999999999, -2357947690, -5159780351, -10604499372, -20661046783, -38443359374, -68719476735, -118587876496, -198359290367
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A108495 a(n) = (n^7 - n)/6.

Original entry on oeis.org

0, 0, 21, 364, 2730, 13020, 46655, 137256, 349524, 797160, 1666665, 3247860, 5971966, 10458084, 17568915, 28476560, 44739240, 68389776, 102036669, 148978620, 213333330, 300181420, 415726311, 567470904, 764411900, 1017252600
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Comments

Also integer sequences for (n^2-n)/1 (A002378 offset), (n^3-n)/2 (A027480 offset), (n^43-n)/42 (A108496) and (n^1807-n)/1806.

Examples

			a(2) = (2^7 - 2)/6 = 126/6 = 21.
		

Crossrefs

Programs

  • Magma
    [(n^7-n)/6: n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Table[(n^7-n)/6,{n,0,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,0,21,364,2730,13020,46655,137256},30] (* Harvey P. Dale, Apr 16 2014 *)
  • Python
    [(n**7-n)//6 for n in range(41)] # David Radcliffe, Jun 06 2025

Formula

a(n) = (n-1)*A059721(n) = -A024004(n)*n/6.
G.f.: 7*x^2*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4)/(1-x)^8. [Colin Barker, May 08 2012]

A258837 a(n) = 1 - n^2.

Original entry on oeis.org

1, 0, -3, -8, -15, -24, -35, -48, -63, -80, -99, -120, -143, -168, -195, -224, -255, -288, -323, -360, -399, -440, -483, -528, -575, -624, -675, -728, -783, -840, -899, -960, -1023, -1088, -1155, -1224, -1295, -1368, -1443, -1520, -1599, -1680, -1763, -1848
Offset: 0

Views

Author

Vincenzo Librandi, Jun 12 2015

Keywords

Crossrefs

Sequences of the type 1-n^k: A024000 (k=1), this sequence (k=2), A024001 (k=3), A024002 (k=4), A024003 (k=5), A024004 (k=6), A024005 (k=7), A024006 (k=8), A024007 (k=9), A024008 (k=10), A024009 (k=11), A024010 (k=12).

Programs

  • Magma
    [1-n^2: n in [0..50]];
    
  • Magma
    I:=[1,0,-3]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    Table[1 - n^2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 0, -3}, 50]
  • PARI
    my(x='x+O('x^50)); Vec((1-3*x)/(1-x)^3) \\ G. C. Greubel, May 11 2017

Formula

G.f.: (1-3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = -A067998(n+1). - Joerg Arndt, Jun 13 2015
a(n) = (-1)^n*A131386(n+1). - Bruno Berselli, Jun 15 2015
E.g.f.: (1 - x - x^2)*exp(x). - G. C. Greubel, May 11 2017
Sum_{n>=2} 1/a(n) = -3/4. - Amiram Eldar, Feb 17 2023
Showing 1-7 of 7 results.