cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A339530 Decimal expansion of Sum_{k>=1} (zeta(8*k)-1).

Original entry on oeis.org

0, 0, 4, 0, 9, 2, 6, 9, 8, 2, 9, 9, 2, 8, 6, 2, 8, 7, 3, 0, 7, 4, 7, 6, 2, 0, 4, 6, 8, 9, 6, 4, 0, 2, 5, 9, 8, 6, 5, 2, 4, 9, 8, 2, 4, 7, 3, 5, 4, 0, 0, 1, 6, 9, 8, 1, 2, 4, 9, 1, 0, 5, 6, 0, 0, 5, 5, 5, 7, 2, 1, 3, 9, 8, 9, 5, 8, 1, 9, 3, 5, 8, 3, 5, 4, 4, 8, 8, 9, 4, 3, 5, 1, 8, 1, 9, 6, 9, 5, 1, 1, 5, 0, 3, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 08 2020, following a suggestion of Artur Jasinski

Keywords

Examples

			0.00409269829928628730747620468964025986524982473540016981249105600555721...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[15/16 - Pi*Coth[Pi]/8 + Pi*(Sin[Sqrt[2]*Pi] + Sinh[Sqrt[2]*Pi]) / (4*Sqrt[2]*(Cos[Sqrt[2]*Pi] - Cosh[Sqrt[2]*Pi])), 10, 100][[1]]]

Formula

Equals Sum_{k>=2} 1/(k^8 - 1).
Equals 15/16 - Pi*coth(Pi)/8 + Pi * (sin(sqrt(2)*Pi) + sinh(sqrt(2)*Pi)) / (4*sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))).
Equals (1/2)*Sum_{k>=2} 1/(k^4-1) - (1/2)*Sum_{k>=2} 1/(k^4+1) = (A256919-A256920)/2. - R. J. Mathar, Jan 22 2021

A339604 Decimal expansion of Sum_{k>=1} (zeta(3*k)-1).

Original entry on oeis.org

2, 2, 1, 6, 8, 9, 3, 9, 5, 1, 0, 9, 2, 6, 7, 0, 3, 8, 3, 9, 2, 1, 1, 8, 4, 2, 1, 1, 8, 2, 7, 6, 5, 1, 5, 2, 5, 9, 5, 2, 4, 1, 3, 9, 8, 1, 8, 1, 1, 3, 0, 3, 7, 8, 4, 0, 5, 1, 2, 8, 2, 7, 5, 2, 5, 7, 5, 2, 1, 0, 2, 4, 9, 4, 2, 6, 1, 5, 9, 3, 5, 6, 7, 7, 3, 9, 5, 4, 4, 4, 9, 4, 3, 0, 7, 2, 7, 0, 4, 4, 6, 0, 4, 8, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Comments

For additional comments and generalization see attached text file.

Examples

			0.221689395109267...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Chop[N[Sum[Zeta[3 n] - 1, {n, 1, Infinity}], 105]]][[1]]
  • PARI
    suminf(k=1, zeta(3*k)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=2} 1/(k^3-1).
Equals 1 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) - sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals 1 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 - sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 7/6 - Pi*tanh(Pi*sqrt(3)/2)/(2*sqrt(3)) - A339605/2.
Equals 4/3 - Pi*tanh(Pi*sqrt(3)/2)/sqrt(3) + A339606.
Equals 1 - A339605 - A339606.

A339606 Decimal expansion of Sum_{k>=0} (zeta(3*k+2)-1).

Original entry on oeis.org

6, 8, 6, 5, 0, 3, 3, 4, 2, 3, 3, 8, 6, 2, 3, 8, 8, 5, 9, 6, 4, 6, 0, 5, 2, 1, 2, 1, 8, 6, 8, 5, 4, 7, 5, 2, 1, 8, 2, 2, 3, 2, 6, 9, 9, 2, 1, 9, 6, 3, 6, 1, 8, 8, 4, 5, 8, 6, 3, 4, 4, 1, 4, 9, 2, 8, 8, 5, 6, 1, 4, 9, 9, 4, 5, 9, 7, 4, 1, 3, 1, 9, 4, 2, 1, 8, 2, 5, 6, 1, 1, 8, 2, 1, 2, 0, 7, 1, 4, 0, 3, 6, 3, 9, 9
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Examples

			0.6865033423386238859646...
		

Crossrefs

Programs

  • Maple
    evalf(Re(sum(1/(k^3+1), k=1..infinity)), 120);  # Alois P. Heinz, Dec 12 2020
  • Mathematica
    RealDigits[Chop[N[Sum[Zeta[3 n + 2] - 1, {n, 0, Infinity}], 105]]][[1]]
  • PARI
    suminf(k=0, zeta(3*k+2)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=1} 1/(k^3 + 1).
Equals -1/3 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is digamma function, gamma is Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/3 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 1 - A339605 - A339604.
Equals 1/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(3*k)-1). - Amiram Eldar, Jan 07 2024

A059830 a(n) = n^6 + n^4 + n^2 + 1.

Original entry on oeis.org

1, 4, 85, 820, 4369, 16276, 47989, 120100, 266305, 538084, 1010101, 1786324, 3006865, 4855540, 7568149, 11441476, 16843009, 24221380, 34117525, 47176564, 64160401, 85961044, 113614645, 148316260, 191435329, 244531876, 309373429, 387952660, 482505745, 595531444
Offset: 0

Views

Author

N. J. A. Sloane, Feb 25 2001

Keywords

Crossrefs

Programs

Formula

a(n) = (n^2+1)*(n^4+1) = A002522(n)*A002523(n) = A002522(n)*A002522(n^2). a(n) = (n^8-1)/(n^2-1) = -A024006(n)/A067998(n+1), n>1. - Alexander Adamchuk, Apr 13 2006
G.f.: -(4*x^6+57*x^5+309*x^4+274*x^3+78*x^2-3*x+1)/(x-1)^7. - Colin Barker, Nov 05 2012

A024007 a(n) = 1 - n^9.

Original entry on oeis.org

1, 0, -511, -19682, -262143, -1953124, -10077695, -40353606, -134217727, -387420488, -999999999, -2357947690, -5159780351, -10604499372, -20661046783, -38443359374, -68719476735, -118587876496, -198359290367
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A258837 a(n) = 1 - n^2.

Original entry on oeis.org

1, 0, -3, -8, -15, -24, -35, -48, -63, -80, -99, -120, -143, -168, -195, -224, -255, -288, -323, -360, -399, -440, -483, -528, -575, -624, -675, -728, -783, -840, -899, -960, -1023, -1088, -1155, -1224, -1295, -1368, -1443, -1520, -1599, -1680, -1763, -1848
Offset: 0

Views

Author

Vincenzo Librandi, Jun 12 2015

Keywords

Crossrefs

Sequences of the type 1-n^k: A024000 (k=1), this sequence (k=2), A024001 (k=3), A024002 (k=4), A024003 (k=5), A024004 (k=6), A024005 (k=7), A024006 (k=8), A024007 (k=9), A024008 (k=10), A024009 (k=11), A024010 (k=12).

Programs

  • Magma
    [1-n^2: n in [0..50]];
    
  • Magma
    I:=[1,0,-3]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    Table[1 - n^2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 0, -3}, 50]
  • PARI
    my(x='x+O('x^50)); Vec((1-3*x)/(1-x)^3) \\ G. C. Greubel, May 11 2017

Formula

G.f.: (1-3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = -A067998(n+1). - Joerg Arndt, Jun 13 2015
a(n) = (-1)^n*A131386(n+1). - Bruno Berselli, Jun 15 2015
E.g.f.: (1 - x - x^2)*exp(x). - G. C. Greubel, May 11 2017
Sum_{n>=2} 1/a(n) = -3/4. - Amiram Eldar, Feb 17 2023

A338858 Decimal expansion of Sum_{k>=0} (zeta(4*k+3)-1).

Original entry on oeis.org

2, 1, 0, 9, 3, 2, 9, 9, 2, 7, 6, 2, 0, 0, 4, 9, 1, 8, 9, 3, 9, 1, 9, 5, 2, 8, 6, 4, 0, 2, 1, 5, 6, 5, 7, 6, 7, 5, 9, 2, 1, 1, 1, 5, 3, 8, 5, 1, 7, 3, 2, 6, 1, 1, 0, 1, 9, 3, 7, 8, 4, 7, 9, 5, 0, 1, 8, 8, 6, 4, 2, 0, 7, 6, 8, 4, 7, 2, 6, 6, 2, 1, 6, 0, 2, 0, 8, 8, 8, 6, 3, 9, 3, 6, 0, 0, 2, 1, 0, 6, 6, 4, 1, 9, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 24 2020

Keywords

Comments

For additional comments and generalization see A339604.

Examples

			0.2109329927620049189391952864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Re[Sum[Zeta[4 n + 3] - 1, {n, 0, Infinity}]], 105]][[1]]
  • PARI
    suminf(k=0, zeta(4*k+3)-1) \\ Michel Marcus, Dec 24 2020

Formula

Equals Sum_{k>=2} k/(k^4-1).
Equals -1/8 + gamma/2 + Re(Psi(i))/2, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/8 + Re(H(I))/2, where H is the harmonic number function.

A339083 Decimal expansion of Sum_{k>=0} (zeta(4*k+2)-1).

Original entry on oeis.org

6, 6, 3, 3, 3, 7, 0, 2, 3, 7, 3, 4, 2, 9, 0, 5, 8, 7, 0, 6, 7, 0, 2, 5, 3, 9, 7, 3, 7, 5, 0, 0, 0, 2, 4, 5, 2, 2, 2, 8, 2, 8, 1, 3, 3, 2, 0, 1, 9, 0, 8, 3, 3, 2, 7, 8, 7, 5, 3, 1, 2, 4, 2, 1, 9, 5, 0, 7, 7, 1, 2, 3, 9, 5, 9, 1, 5, 5, 0, 1, 0, 8, 7, 1, 7, 8, 2, 7, 7, 5, 8, 7, 9, 6, 9, 7, 7, 4, 5, 9, 3, 8, 2, 5, 8, 9, 4, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 24 2020

Keywords

Comments

Sum_{k>=1} zeta(4*k)-1 see A256919.
Sum_{k>=1} zeta(4*k+1)-1 see A339097.
Sum_{k>=0} zeta(4*k+3)-1 see A338858.
For additional comments and generalization see A339604.

Examples

			0.663337023734290587067025397375...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[Zeta[4 n + 2] - 1, {n, 0, Infinity}], 105]][[1]]
  • PARI
    suminf(k=0, zeta(4*k+2)-1) \\ Michel Marcus, Dec 24 2020

Formula

Equals Sum_{k>=2} k^2/(k^4-1).
Equals -1/8 + Pi*coth(Pi)/4 = -1/8 + A338815 = 3/4 - A256919.

Extensions

a(104) corrected and more terms from Georg Fischer, Jun 06 2024

A258809 a(n) = n^8 - 1.

Original entry on oeis.org

0, 255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720, 99999999, 214358880, 429981695, 815730720, 1475789055, 2562890624, 4294967295, 6975757440, 11019960575, 16983563040, 25599999999, 37822859360, 54875873535, 78310985280, 110075314175
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Cf. similar sequences listed in A258807.

Programs

  • Magma
    [n^8-1: n in [1..40]];
  • Mathematica
    Table[n^8 - 1, {n, 33}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720}, 40]

Formula

G.f.: x^2*(225 + 4535*x + 14595*x^2 + 18069*x^3 + 569*x^4 + 3999*x^5 - 2511*x^6 + 1079*x^7 - 270*x^8 + 30*x^9) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
a(n) = (n - 1)*(n + 1)*(n^2 + 1)*(n^4 + 1) = -A024006(n). [Bruno Berselli, Jun 12 2015]

A351432 Decimal expansion of sqrt(3)/2 + Pi*tanh(Pi*sqrt(3)/2)/2.

Original entry on oeis.org

2, 4, 2, 3, 2, 6, 6, 6, 2, 8, 4, 9, 7, 6, 3, 2, 6, 9, 6, 8, 9, 3, 2, 9, 4, 4, 9, 5, 1, 9, 7, 1, 2, 6, 8, 5, 8, 2, 2, 5, 5, 8, 8, 2, 3, 3, 3, 5, 8, 5, 1, 3, 1, 3, 1, 4, 2, 5, 9, 4, 9, 6, 7, 2, 7, 6, 4, 6, 8, 0, 0, 0, 9, 6, 9, 0, 2, 0, 0, 4, 0, 6, 4, 3, 6, 1, 5, 1, 2, 8, 1, 5, 8, 3, 2, 2, 7, 1, 9, 0, 9, 5, 0, 1, 0, 9
Offset: 1

Views

Author

Artur Jasinski, Feb 11 2022

Keywords

Comments

Imaginary part of psi(-1/2 + i*sqrt(3)/2) where psi is the digamma function.

Examples

			2.423266628497632696893294495...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[3]/2 + 1/2 Pi Tanh[Sqrt[3] Pi/2], 105]][[1]]
  • PARI
    imag(psi(-1/2+I*sqrt(3)/2)) \\ Michel Marcus, Feb 11 2022

Formula

Equals sqrt(3)*(1 - gamma/3 - Re(psi(-1/2 + i*sqrt(3)/2))/3 + A339606).

Extensions

Last two digits corrected by Georg Fischer, May 15 2024
Showing 1-10 of 10 results.