A024088 a(n) = 8^n - 1.
0, 7, 63, 511, 4095, 32767, 262143, 2097151, 16777215, 134217727, 1073741823, 8589934591, 68719476735, 549755813887, 4398046511103, 35184372088831, 281474976710655, 2251799813685247, 18014398509481983
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-8).
Programs
-
GAP
List([0..30], n-> 8^n -1); # G. C. Greubel, Aug 03 2019
-
Magma
[8^n -1: n in [0..20]]; // G. C. Greubel, Aug 03 2019
-
Mathematica
8^Range[0,20]-1 (* or *) LinearRecurrence[{9,-8},{0,7},20] (* Harvey P. Dale, Jan 04 2017 *)
-
PARI
vector(20, n, n--; 8^n -1) \\ G. C. Greubel, Aug 03 2019
-
Sage
[gaussian_binomial(3*n,1,2) for n in range(0,20)] # Zerinvary Lajos, May 28 2009
-
Sage
[stirling_number2(3*n+1,2) for n in range(0,20)] # Zerinvary Lajos, Nov 26 2009
-
Sage
[8^n-1 for n in (0..20)] # Bruno Berselli, Nov 11 2015
Formula
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-8*x) - 1/(1-x).
E.g.f.: exp(8*x) - exp(x). (End)
a(n) = 8*a(n-1) + 7 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = Sum_{i=1..n} 7^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
a(n) = A001018(n) - 1. - Sean A. Irvine, Jun 19 2019
Sum_{n>=1} 1/a(n) = A248725. - Amiram Eldar, Nov 13 2020
Comments