cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024493 a(n) = C(n,0) + C(n,3) + ... + C(n,3[n/3]).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 22, 43, 85, 170, 341, 683, 1366, 2731, 5461, 10922, 21845, 43691, 87382, 174763, 349525, 699050, 1398101, 2796203, 5592406, 11184811, 22369621, 44739242, 89478485, 178956971, 357913942, 715827883, 1431655765, 2863311530
Offset: 0

Views

Author

Keywords

Comments

First differences of A131708. First differences give A024495. - Paul Curtz, Nov 18 2007
a(n) = upper left term of X^n, where X = the 4 X 4 matrix [1,0,1,0; 1,1,0,0; 0,1,1,1; 0,0,0,1]. - Gary W. Adamson, Mar 01 2008
M^n * [1,0,0] = [a(n), A024495(n), A024494(n)], where M = a 3 X 3 matrix [1,1,0; 0,1,1; 1,0,1]. Sum of terms = 2^n. Example: M^5 * [1,0,0] = [11, 11, 10], sum = 2^5 = 32. - Gary W. Adamson, Mar 13 2009
Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1+M)^n = a(n) + A024494(n)*M + A024495(n)*M^2. - Stanislav Sykora, Jun 10 2012
Counts closed walks of length (n) at the vertices of a unidirectional triangle, containing a loop at each vertex. - David Neil McGrath, Sep 15 2014
{A024493, A131708, A024495} is the difference analog of the hyperbolic functions of order 3, {h_1(x), h_2(x), h_3(x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 08 2017

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd. ed., Problem 38, p. 70.
  • Higher Transcendental Functions, Bateman Manuscript Project, Vol. 3, ed. A. Erdelyi, 1983 (chapter XVIII).

Crossrefs

Row sums of A098172.
Cf. A024494, A094715, A094717, A079978 (inverse binomial transform).

Programs

  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jun 12 2017
  • Maple
    A024493_list := proc(n) local i; series((exp(2*z)+2*cos(z*sqrt(3/4))*exp(z/2)) /3,z,n+2): seq(i!*coeff(%,z,i),i=0..n) end: A024493_list(33); # Peter Luschny, Jul 10 2012
    seq((3*(-1)^(floor((n+1)/3))+(-1)^n+2^(n+1))/6, n=0..33); # Peter Luschny, Jun 14 2017
  • Mathematica
    nn = 18; a = Sum[x^(3 i)/(3 i)!, {i, 0, nn}]; b = Exp[x];Range[0, nn]! CoefficientList[Series[a b , {x, 0, nn}], x]  (* Geoffrey Critzer, Dec 27 2011 *)
    Differences[LinearRecurrence[{3,-3,2},{0,1,2},40]] (* Harvey P. Dale, Nov 27 2013 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,if(n-i-3*j,0,n!/(i)!/(3*j)!)))
    
  • PARI
    a(n)=sum(k=0,n\3,binomial(n,3*k)) /* Michael Somos, Feb 14 2006 */
    
  • PARI
    a(n)=if(n<0, 0, ([1,0,1;1,1,0;0,1,1]^n)[1,1]) /* Michael Somos, Feb 14 2006 */
    

Formula

a(n) = (1/3)*(2^n+2*cos( n*Pi/3 )).
G.f.: (1-x)^2/((1-2*x)*(1-x+x^2)) = (1-2*x+x^2)/(1-3*x+3*x^2-2*x^3). - Paul Barry, Feb 11 2004
a(n) = (1/3)*(2^n+b(n)) where b(n) is the 6-periodic sequence {2, 1, -1, -2, -1, 1}. - Benoit Cloitre, May 23 2004
Binomial transform of 1/(1-x^3). G.f.: (1-x)^2/((1-x)^3-x^3) = x/(1-x-2*x^2)+1/(1+x^3); a(n) = Sum_{k=0..floor(n/3)} binomial(n, 3*k); a(n) = Sum_{k=0..n} binomial(n,k)*(cos(2*Pi*k/3+Pi/3)/3+sin(2*Pi*k/3+Pi/3)/sqrt(3)+1/3); a(n) = A001045(n)+sqrt(3)*cos(Pi*n/3+Pi/6)/3+sin(Pi*n/3+Pi*/6)/3+(-1)^n/3. - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} binomial(n, 3*(n-k)). - Paul Barry, Aug 30 2004
G.f.: ((1-x)*(1-x^2)*(1-x^3))/((1-x^6)*(1-2*x)). - Michael Somos, Feb 14 2006
a(n+1)-2a(n) = -A010892(n). - Michael Somos, Feb 14 2006
E.g.f.: exp(x)*A(x) where A(x) is the e.g.f. for A079978. - Geoffrey Critzer, Dec 27 2011
Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) + z(n), y(n+1) = y(n) + x(n), z(n+1) = z(n) + y(n). Then a(n) = x(n). - Stanislav Sykora, Jun 10 2012
E.g.f.: (exp(2*z)+2*cos(z*sqrt(3/4))*exp(z/2))/3. - Peter Luschny, Jul 10 2012
Recurrence: a(0) = 1, a(1) = 1, a(2) = 1, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). - Christopher Hunt Gribble, Mar 25 2014
a(m+k) = a(m)*a(k) + A131708(m)*A024495(k) + A024495(m)*A131708(k). - Vladimir Shevelev, Jun 08 2017