A138587 The union of all entries of A024495, A131708 and A024493 sorted into natural order.
0, 1, 2, 3, 5, 6, 10, 11, 21, 22, 42, 43, 85, 86, 170, 171, 341, 342, 682, 683, 1365, 1366, 2730, 2731, 5461, 5462, 10922, 10923, 21845, 21846, 43690, 43691, 87381, 87382, 174762, 174763, 349525, 349526, 699050, 699051, 1398101, 1398102, 2796202, 2796203, 5592405
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,1,1,2,2).
Programs
-
Mathematica
CoefficientList[Series[x*(3*x + 4*x^2 + 5*x^3 + 4*x^4 + 2*x^5 + 1)/((1 + x)*(1 - 2*x^2)*(1 + x^2)), {x,0,50}], x] (* G. C. Greubel, Oct 03 2017 *) LinearRecurrence[{-1,1,1,2,2},{0,1,2,3,5,6,10},50] (* Harvey P. Dale, Feb 18 2023 *)
-
PARI
x='x+O('x^50); concat(0, Vec(x*(3*x+4*x^2+5*x^3+4*x^4 +2*x^5+ 1)/((1+x)*(1-2*x^2)*(1+x^2)))) \\ G. C. Greubel, Oct 03 2017
Formula
a(n+8) == a(n) (mod 10), n > 1.
a(2*n+1) - a(2*n) = 1.
a(2*n) = A000975(n+1), n>0 (bisection).
From R. J. Mathar, Nov 22 2009: (Start)
a(n) = -a(n-1) +a(n-2) +a(n-3) +2*a(n-4) +2*a(n-5), n>6.
G.f.: x*(3*x+4*x^2+5*x^3+4*x^4+2*x^5+1)/((1+x)*(1-2*x^2)*(1+x^2)). (End)
Extensions
Edited and extended by R. J. Mathar, Nov 22 2009
Comments