cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001583 Artiads: the primes p == 1 (mod 5) for which Fibonacci((p-1)/5) is divisible by p.

Original entry on oeis.org

211, 281, 421, 461, 521, 691, 881, 991, 1031, 1151, 1511, 1601, 1871, 1951, 2221, 2591, 3001, 3251, 3571, 3851, 4021, 4391, 4441, 4481, 4621, 4651, 4691, 4751, 4871, 5081, 5281, 5381, 5531, 5591, 5641, 5801, 5881, 6011, 6101, 6211, 6271, 6491, 6841
Offset: 1

Views

Author

Keywords

Comments

From A.H.M. Smeets, Nov 15 2023: (Start)
Mean gap size between two consecutive terms at p: ~ 20*log(p) (see E. Lehmer).
In E. Lehmer, Artiads characterized, she counted in the table on p. 122 the primes p for which p == 1 (mod 5) instead of all primes. As a result, in the corollary on p. 121, the 20% becomes 5% (or 1/20 instead of 1/5). (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A047650, A000045, A024894, subsequence of A030430.
See also A270798 (a subsequence), A270800.

Programs

  • Haskell
    a001583 n = a001583_list !! (n-1)
    a001583_list = filter
       (\p -> mod (a000045 $ div (p - 1) 5) p == 0) a030430_list
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Mathematica
    Select[ Prime[ Range[1000]], Mod[#, 5] == 1 && Divisible[ Fibonacci[(# - 1)/5], #] &] (* Jean-François Alcover, Jun 22 2012 *)
  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    list(lim)=my(v=List()); forprime(p=11,lim, if(p%5==1 && fibmod(p\5,p)==0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 06 2017

Formula

From A.H.M. Smeets, Nov 15 2023: (Start)
Equals {prime(m): A296240(m) == 0 (mod 5)}.
a(n) ~ prime(20*n). (End)

Extensions

More terms from James Sellers, Jan 25 2000
Edited by N. J. A. Sloane, Apr 01 2016

A153329 Numbers k such that 5*k + 1 is not prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 87
Offset: 1

Views

Author

Vincenzo Librandi, Dec 23 2008

Keywords

Comments

Numbers k such that (5*k)!/(5*k + 1) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the even terms in the following triangular array:
   *;
   *,  *;
   4,  *,  *;
   *,  *,  *, 16;
   *,  *,  *,  *, 24;
   *,  *, 18,  *,  *,  *;
   *,  *,  *,  *,  *,  *,  *;
  10,  *,  *,  *,  *, 44,  *,  *;
   *,  *,  *, 34,  *,  *,  *,  *, 72;
   *,  *,  *,  *, 46,  *,  *,  *,  *, 88;
   *,  *, 32,  *,  *,  *,  *, 78,  *,  *,  *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(5*n + 1)]; // Vincenzo Librandi, Jan 12 2013
  • Maple
    for n from 0 to 100 do
    if irem(factorial(5*n), 5*n+1) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[0, 200], !PrimeQ[5*# + 1]&] (* Vincenzo Librandi, Jan 12 2013 *)

Extensions

Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010
0 added by Arkadiusz Wesolowski, Aug 03 2011

A111223 Numbers n such that 5*n + 2 is prime.

Original entry on oeis.org

0, 1, 3, 7, 9, 13, 19, 21, 25, 27, 31, 33, 39, 45, 51, 55, 61, 63, 67, 69, 73, 79, 91, 93, 97, 109, 111, 115, 117, 121, 123, 129, 135, 145, 151, 157, 159, 165, 171, 175, 177, 181, 187, 189, 193, 195, 199, 217, 219, 223, 237, 243, 247, 255, 259, 261, 265, 273, 285
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 26 2005

Keywords

Examples

			97 is in the sequence because 5*97 + 2 = 487 is prime.
		

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001, p. 410 (Theorem 34.8).

Crossrefs

Cf. A024894.

Programs

  • Magma
    [n: n in [0..350] | IsPrime(5*n+2)]; // Vincenzo Librandi, Nov 13 2010
    
  • Mathematica
    Select[Range[0, 1000], PrimeQ[5 # + 2] &] (* Vincenzo Librandi, May 20 2014 *)
    Table[If[PrimeQ[5p+2], Mod[5^(-1) Fibonacci[5p], 5p+2],  Unevaluated[Sequence[]]], {p, 0, 250}] (* Rigoberto Florez, Mar 02 2020 *)
    Select[(#-2)/5&/@Prime[Range[250]],IntegerQ] (* Harvey P. Dale, Sep 27 2023 *)
  • PARI
    is(n)=isprime(5*n+2) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = F(p-2)/5 mod p, where p is the n-th prime number such that p==2 (mod 5) and F(m) is m-th Fibonacci number. - Rigoberto Florez, Mar 02 2020

A111225 Numbers n such that 5*n + 8 is prime.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 31, 33, 37, 43, 45, 51, 55, 57, 61, 69, 73, 75, 85, 87, 91, 99, 103, 111, 117, 121, 127, 129, 133, 135, 145, 147, 153, 163, 169, 171, 175, 189, 195, 201, 205, 211, 217, 219, 223, 229, 231, 237, 241, 243, 255, 259, 273, 283, 285, 289
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 26 2005

Keywords

Examples

			If n=103 then 5*n + 8 = 523 (prime).
		

Crossrefs

Programs

A111224 Numbers n such that 5*n + 7 is prime.

Original entry on oeis.org

0, 2, 6, 8, 12, 18, 20, 24, 26, 30, 32, 38, 44, 50, 54, 60, 62, 66, 68, 72, 78, 90, 92, 96, 108, 110, 114, 116, 120, 122, 128, 134, 144, 150, 156, 158, 164, 170, 174, 176, 180, 186, 188, 192, 194, 198, 216, 218, 222, 236, 242, 246, 254, 258, 260, 264, 272, 284
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 26 2005

Keywords

Examples

			If n=108 then 5*n + 7 = 547 (prime).
		

Crossrefs

Programs

A367970 Least k such that 5*n*k+1 is a prime.

Original entry on oeis.org

2, 1, 2, 2, 4, 1, 2, 1, 4, 2, 6, 1, 2, 1, 2, 3, 12, 2, 2, 1, 2, 3, 4, 2, 2, 1, 2, 2, 10, 1, 2, 4, 2, 6, 4, 1, 8, 1, 6, 2, 4, 1, 2, 3, 8, 2, 4, 1, 2, 1, 4, 2, 4, 1, 12, 1, 2, 5, 4, 2, 6, 1, 2, 2, 4, 1, 6, 3, 2, 2, 6, 5, 18, 4, 2, 2, 6, 3, 6, 1, 2, 2, 28, 1, 6
Offset: 1

Views

Author

Robert Price, Dec 17 2023

Keywords

Crossrefs

A070849 lists the corresponding primes.

Programs

  • Mathematica
    A367970 = {};
    Do[k=1; While[!PrimeQ[5 n k+1], k++]; AppendTo[A367970 ,k], {n,85}];
    A367970
  • PARI
    a(n) = my(k=1); while (!isprime(5*n*k+1), k++); k; \\ Michel Marcus, Dec 17 2023

A111226 Numbers n such that 5*n + 12 is prime.

Original entry on oeis.org

1, 5, 7, 11, 17, 19, 23, 25, 29, 31, 37, 43, 49, 53, 59, 61, 65, 67, 71, 77, 89, 91, 95, 107, 109, 113, 115, 119, 121, 127, 133, 143, 149, 155, 157, 163, 169, 173, 175, 179, 185, 187, 191, 193, 197, 215, 217, 221, 235, 241, 245, 253, 257, 259, 263, 271, 283, 287
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 26 2005

Keywords

Examples

			If n=109 then 5*n + 12 = 557 (prime).
		

Crossrefs

Programs

A111230 Numbers k such that 5*k + 14 is prime.

Original entry on oeis.org

1, 3, 9, 13, 15, 19, 25, 27, 33, 37, 43, 45, 51, 67, 69, 73, 75, 79, 81, 85, 87, 93, 97, 99, 111, 117, 121, 129, 139, 141, 145, 151, 159, 163, 165, 169, 181, 183, 199, 201, 205, 207, 211, 219, 223, 243, 247, 249, 253, 255, 261, 277, 279, 283, 285, 289, 295, 297
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 27 2005

Keywords

Examples

			If k=111 then 5*k + 14 = 569 (prime).
		

Crossrefs

Programs

Showing 1-8 of 8 results.