A045751
Numbers k such that 4*k + 1 is not prime.
Original entry on oeis.org
0, 2, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 26, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 42, 44, 46, 47, 50, 51, 52, 53, 54, 55, 56, 59, 61, 62, 63, 65, 66, 68, 71, 72, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 89, 90, 91, 92, 94, 95, 96, 98, 101, 103, 104, 106, 107, 109
Offset: 1
Distribution of the positive terms in the following triangular array:
2;
*, 6;
5, *, 12;
*, 11, *, 20;
8, *, 19, *, 30;
*, 16, *, 29, *, 42;
11, *, 26, *, 41, *, 56;
*, 21, *, 38, *, 55, *, 72;
14, *, 33, *, 52, *, 71, *, 90;
*, 26, *, 47, *, 68, *, 89, *, 110;
17, *, 40, *, 63, *, 86, *, 109, *, 132;
etc., where * marks the noninteger values of (2*h*k + k + h)/2 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
-
[n: n in [0..220]| not IsPrime(4*n+1)]; // Vincenzo Librandi, Jan 28 2011
-
for n from 0 to 100 do
if irem(factorial(4*n), 4*n+1) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[0, 200], ! PrimeQ[4 # + 1] &]
-
is(n)=!isprime(4*n+1) \\ Charles R Greathouse IV, Jul 29 2016
A095277
Numbers k such that 4k + 3 is composite.
Original entry on oeis.org
3, 6, 8, 9, 12, 13, 15, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 42, 43, 45, 46, 48, 50, 51, 53, 54, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108
Offset: 1
Distribution of the positive terms in the following triangular array:
*;
3, *;
*, 8, *;
6, *, 15, *;
*, 13, *, 24, *;
9, *, 22, *, 35, *;
*, 18, *, 33, *, 48, *;
etc., where * marks the noninteger values of (2*h*k + k + h-1)/2 with h >= k >= 1. - _Vincenzo Librandi_, Apr 22 2014
A153088
Numbers k such that 5*k - 1 is not prime.
Original entry on oeis.org
1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 89, 91, 92, 93
Offset: 1
Distribution of the even terms in the following triangular array:
2;
*, *;
*, *, 10;
*, *, *, *;
*, *, *, 20, *;
8, *, *, *, *, 34;
*, *, *, *, *, *, *;
*, *, 24, *, *, *, *, 58;
*, *, *, *, 42, *, *, *, *;
*, *, *, 38, *, *, *, *, 80, *;
14, *, *, *, *, 60, *, *, *, *, 106;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h + 2)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
-
[n: n in [1..100] | not IsPrime(5*n-1)]; // Vincenzo Librandi, Oct 11 2012
-
# produces the sequence apart from the initial terms 1 and 2
for n from 0 to 100 do
if irem(factorial(5*n), 5*n+4) = 0 then print(n+1); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[1, 200], !PrimeQ[5 # - 1] &] (* Vincenzo Librandi, Oct 11 2012 *)
First 29 replaced with 20, 4 replaced with 44, extended by
R. J. Mathar, Jan 05 2009
A153170
Numbers k such that 3*k + 2 is not prime.
Original entry on oeis.org
2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102
Offset: 1
Distribution of the odd terms in the following triangular array:
*;
*, *;
*, 11, *;
*, *, *, *;
*, *, 25, *, *;
*, 21, *, *, 47, *;
*, *, *, *, *, *, *;
*, *, 39, *, *, 73, *, *;
*, 31, *, *, 69, *, *, 107, *;
*, *, *, *, *, *, *, *, *, *;
*, *, 53, *, *, 99, *, *, 145, *, *;
*, 41, *, *, 91, *, *, 141, *, *, 191, *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 1)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
-
[n: n in [1..110] | not IsPrime(3*n + 2)]; // Vincenzo Librandi, Oct 11 2012
-
for n from 0 to 100 do
if irem(factorial(3*n), 3*n+2) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[1, 200], !PrimeQ[3*# + 2] &] (* Vincenzo Librandi, Oct 11 2012 *)
-
for(n=1,200,if(!isprime(3*n+2), print1(n,", "))) \\ Joerg Arndt, Nov 27 2010
A153275
Numbers n such that 10*n+1 is not prime.
Original entry on oeis.org
0, 2, 5, 8, 9, 11, 12, 14, 16, 17, 20, 22, 23, 26, 29, 30, 32, 34, 35, 36, 37, 38, 39, 41, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 71, 72, 73, 74, 77, 78, 79, 80, 83, 84, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 100, 101, 104, 107, 108, 110
Offset: 1
Distribution of the terms in the following triangular array:
*;
*,*;
2,*,*;
*,*,*,8;
*,*,*,*,12;
*,*,9,*,*,*;
*,*,*,*,*,*,*;
5,*,*,*,*,22,*,*;
*,*,*,17,*,*,*,*,36;
*,*,*,*,23,*,*,*,*,44;
*,*,16,*,*,*,*,39,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
A153309
Numbers k such that 3*k + 1 is not prime.
Original entry on oeis.org
0, 1, 3, 5, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 95
Offset: 1
Distribution of the even terms in the following triangular array:
*;
* 8;
* * 16;
* * * *;
* 18 * * 40;
* * 30 * * 56;
* * * * * * *;
* 28 * * 62 * * 96;
* * 44 * * 82 * * 120;
* * * * * * * * * *;
* 38 * * 84 * * 130 * * 176;
* * 58 * * 108 * * 158 * * 208;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
-
[n: n in [0..150] | not IsPrime(3*n + 1)]; // Vincenzo Librandi, Jan 12 2013
-
# produces the sequence apart from the term equal to 1
for n from 0 to 100 do
if irem(factorial(3*n), 3*n+1) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[0, 200], !PrimeQ[3*# + 1]&] (* Vincenzo Librandi, Jan 12 2013 *)
-
is(n)=!isprime(3*n+1) \\ Charles R Greathouse IV, Aug 01 2016
Showing 1-6 of 6 results.
Comments