A024911 Duplicate of A024906.
2, 4, 8, 12, 14, 18, 20, 22, 30, 34, 42, 44, 48, 54, 58, 60, 64, 68, 70, 82, 84, 90, 92, 98, 102
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
If k=99 then 18*k + 1 = 1783 (prime).
[ n: n in [0..1500] | IsPrime(18*n + 1) ]; // Vincenzo Librandi, Jan 31 2011
Select[Range[200],PrimeQ[18#+1]&] (* Harvey P. Dale, Mar 14 2011 *)
is(n)=isprime(18*n+1) \\ Charles R Greathouse IV, Feb 20 2017
Number 703 with divisors 1, 19, 37, 703 is in sequence because all divisors have additive digital root of 1.
digitalRoot[n_, b_:10] := FixedPoint[Plus@@IntegerDigits[#, b] &, n]; A211821 = Select[Range[1, 1999, 9], Union[digitalRoot[Divisors[#]]] == {1} &] (* Alonso del Arte, May 02 2012 *)
Number 6859 with divisors 1, 19, 361, 6859 is in sequence because all divisors have additive digital root of 1.
filter:= n -> not isprime(n) and numtheory:-factorset(n) mod 9 = {1}: filter(1):= true: select(filter, [seq(i,i=1..20000,9)]); # Robert Israel, May 10 2020
(* First run the program for A211821 *) Select[A211821, Not[PrimeQ[#]] &] (* Alonso del Arte, May 02 2012 *)
Number k = 40 is in sequence because number 9*40 + 1 = 361 is number with all divisors (1, 19, 361) with additive digital root = 1.
adrQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==1; Select[Range[ 0,250],AllTrue[Divisors[9#+1],adrQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2020 *)
27*6 + 1 = 163 which is prime. Hence 6 is in the sequence.
isA224467 := proc(n) isprime(27*n+1) ; end proc: for n from 1 to 300 do if isA224467(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 20 2013
Select[Range[300],PrimeQ[27#+1]&] (* Harvey P. Dale, Apr 14 2017 *)
is(n)=isprime(27*n+1) \\ Charles R Greathouse IV, Jun 06 2017
A368201 = {}; Do[k=1; While[!PrimeQ[9 n k+1], k++]; AppendTo[A368201,k], {n,85}]; A368201
a(n) = my(k=1); while (!isprime(9*n*k+1), k++); k; \\ Michel Marcus, Dec 16 2023
Comments