A025164 a(n) = a(n-2) + (2n-1)a(n-1); a(0)=1, a(1)=1.
1, 1, 4, 21, 151, 1380, 15331, 200683, 3025576, 51635475, 984099601, 20717727096, 477491822809, 11958013297321, 323343850850476, 9388929687961125, 291380164177645351, 9624934347550257708, 337164082328436665131, 12484695980499706867555, 487240307321817004499776
Offset: 0
Keywords
Examples
G.f. = 1 + x + 4*x^2 + 21*x^3 + 151*x^4 + 1380*x^5 + 15331*x^6 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
Programs
-
Magma
[n le 2 select 1 else (2*n-3)*Self(n-1)+Self(n-2): n in [1..20]]; // Vincenzo Librandi, Apr 22 2015
-
Maple
a:= proc(n) option remember; `if`(n<2, 1, a(n-2) +(2*n-1)*a(n-1)) end: seq(a(n), n=0..25); # Alois P. Heinz, Sep 17 2014
-
Mathematica
a[ n_ ] := a[n] =a[n-2]+(-1+2 n) a[n-1]; a[0] := 1; a[1] := 1; RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-2]+(2n-1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Mar 25 2012 *) a[ n_] := Round[ (Exp[1] + Exp[-1]) (BesselK[n - 3/2, 1] + (2 n - 1) BesselK[n - 1/2, 1]) / Sqrt[2 Pi]]; (* Michael Somos, Aug 26 2015 (n>=0) *) a[ n_] := Module[{ y = Sqrt[1 - 2 x]}, n! SeriesCoefficient[ Cosh[y - 1] / y, {x, 0, n}]]; (* Michael Somos, Aug 26 2015 (n>=0) *) a[ n_] := (BesselK[ 1/2, 1] BesselI[ n + 1/2, -1] - BesselI[ -1/2, -1] BesselK[ n + 1/2, 1]) / I // FunctionExpand // Simplify; (* Michael Somos, Aug 26 2015 *) Join[{1}, Convergents[Coth[1], 20] // Numerator] (* Jean-François Alcover, Jun 15 2019 *)
-
PARI
a(n)={if(n<2,1,a(n-2)+(2*n-1)*a(n-1))} \\ Edward Jiang, Sep 11 2014
-
Sage
def A025164(n): if n == 0: return 1 return sloane.A001147(n)*hypergeometric([-n/2+1/2, -n/2], [1/2, -n, 1/2-n], 1) [round(A025164(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 11 2014
Formula
E.g.f.: cosh((1-2*x)^(1/2)-1)/(1-2*x)^(1/2). - Vladeta Jovovic, Jan 30 2004
a(n) = round((exp(1)+exp(-1))*(BesselK(n-3/2, 1)+(2*n-1)*BesselK(n-1/2, 1))/sqrt(2*Pi) ). - Mark van Hoeij, Jul 02 2010
a(n) ~ sqrt(2)*cosh(1)*(2*n)^n/exp(n). - Vaclav Kotesovec, Jan 05 2013
a(n) = A001147(n)*hypergeometric([-n/2+1/2, -n/2], [1/2, -n, 1/2-n], 1) for n >= 1. - Peter Luschny, Sep 11 2014
a(n) = Sum_{k = 0..floor(n/2)} binomial(n - k, k)*( Product_{j = 1 .. n - 2*k} (2*k + 2*j - 1) ) = Sum_{k = 0..floor((n+1)/2)} 2^(2*k - n - 1)*(2*n + 2 - 2*k)!/( (n + 1 - 2*k)!*(2*k)! ). - Peter Bala, Sep 11 2014
a(n) = -i*( BesselK(1/2, 1)*BesselI(n+1/2, -1) - BesselI(-1/2, -1)*BesselK(n+1/2, 1)) for n>=0 (a(0)=1, a(1) = 1). - G. C. Greubel, Apr 21 2015
a(n) = A036244(-1-n) for all n in Z.
0 = a(n)*(-a(n+2)) + a(n+1)*(+a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n >= 0. - Michael Somos, Jan 10 2017
Given e.g.f. A(x), then 0 = A(x) + 3*A'(x) + (2*x-1)*A''(x). - Michael Somos, Jan 10 2017
Given g.f. A(x), then 0 = 1 + (x^2+x-1)*A(x) + 2*x^2*A'(x). - Michael Somos, Jan 10 2017
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
More terms from Vladeta Jovovic, Jan 30 2004
Comments