cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025164 a(n) = a(n-2) + (2n-1)a(n-1); a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 4, 21, 151, 1380, 15331, 200683, 3025576, 51635475, 984099601, 20717727096, 477491822809, 11958013297321, 323343850850476, 9388929687961125, 291380164177645351, 9624934347550257708, 337164082328436665131, 12484695980499706867555, 487240307321817004499776
Offset: 0

Views

Author

Keywords

Comments

Numerators of convergents to coth(1) = 1.313035... = A073747.
Numerator of continued fraction given by C(n) = [ 1; 3, 5, 7, ..., (2n-1)]. - Amarnath Murthy, May 02 2001
Equals eigensequence of an infinite lower triangular matrix with (1, 3, 5, ...) in the main diagonal, (1, 1, 1, ...) in the sum diagonal, and the rest zeros. - Gary W. Adamson, Apr 17 2009
We can use the defining recurrence to extend the sequence to negative indices to give a(-n) = A036244(n-1). - Peter Bala, Sep 11 2014

Examples

			G.f. = 1 + x + 4*x^2 + 21*x^3 + 151*x^4 + 1380*x^5 + 15331*x^6 + ...
		

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (2*n-3)*Self(n-1)+Self(n-2): n in [1..20]]; // Vincenzo Librandi, Apr 22 2015
    
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 1, a(n-2) +(2*n-1)*a(n-1))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 17 2014
  • Mathematica
    a[ n_ ] := a[n] =a[n-2]+(-1+2 n) a[n-1]; a[0] := 1; a[1] := 1;
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-2]+(2n-1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Mar 25 2012 *)
    a[ n_] := Round[ (Exp[1] + Exp[-1]) (BesselK[n - 3/2, 1] + (2 n - 1) BesselK[n - 1/2, 1]) / Sqrt[2 Pi]]; (* Michael Somos, Aug 26 2015 (n>=0) *)
    a[ n_] := Module[{ y = Sqrt[1 - 2 x]}, n! SeriesCoefficient[ Cosh[y - 1] / y, {x, 0, n}]]; (* Michael Somos, Aug 26 2015 (n>=0) *)
    a[ n_] := (BesselK[ 1/2, 1] BesselI[ n + 1/2, -1] - BesselI[ -1/2, -1] BesselK[ n + 1/2, 1]) / I // FunctionExpand // Simplify; (* Michael Somos, Aug 26 2015 *)
    Join[{1}, Convergents[Coth[1], 20] // Numerator] (* Jean-François Alcover, Jun 15 2019 *)
  • PARI
    a(n)={if(n<2,1,a(n-2)+(2*n-1)*a(n-1))} \\ Edward Jiang, Sep 11 2014
  • Sage
    def A025164(n):
        if n == 0: return 1
        return sloane.A001147(n)*hypergeometric([-n/2+1/2, -n/2], [1/2, -n, 1/2-n], 1)
    [round(A025164(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 11 2014
    

Formula

E.g.f.: cosh((1-2*x)^(1/2)-1)/(1-2*x)^(1/2). - Vladeta Jovovic, Jan 30 2004
a(n) = round((exp(1)+exp(-1))*(BesselK(n-3/2, 1)+(2*n-1)*BesselK(n-1/2, 1))/sqrt(2*Pi) ). - Mark van Hoeij, Jul 02 2010
a(n) ~ sqrt(2)*cosh(1)*(2*n)^n/exp(n). - Vaclav Kotesovec, Jan 05 2013
a(n) = A001147(n)*hypergeometric([-n/2+1/2, -n/2], [1/2, -n, 1/2-n], 1) for n >= 1. - Peter Luschny, Sep 11 2014
a(n) = Sum_{k = 0..floor(n/2)} binomial(n - k, k)*( Product_{j = 1 .. n - 2*k} (2*k + 2*j - 1) ) = Sum_{k = 0..floor((n+1)/2)} 2^(2*k - n - 1)*(2*n + 2 - 2*k)!/( (n + 1 - 2*k)!*(2*k)! ). - Peter Bala, Sep 11 2014
a(n) = -i*( BesselK(1/2, 1)*BesselI(n+1/2, -1) - BesselI(-1/2, -1)*BesselK(n+1/2, 1)) for n>=0 (a(0)=1, a(1) = 1). - G. C. Greubel, Apr 21 2015
a(n) = A036244(-1-n) for all n in Z.
0 = a(n)*(-a(n+2)) + a(n+1)*(+a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n >= 0. - Michael Somos, Jan 10 2017
Given e.g.f. A(x), then 0 = A(x) + 3*A'(x) + (2*x-1)*A''(x). - Michael Somos, Jan 10 2017
Given g.f. A(x), then 0 = 1 + (x^2+x-1)*A(x) + 2*x^2*A'(x). - Michael Somos, Jan 10 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
More terms from Vladeta Jovovic, Jan 30 2004