A025529 a(n) = (1/1 + 1/2 + ... + 1/n)*lcm{1,2,...,n}.
1, 3, 11, 25, 137, 147, 1089, 2283, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 825887397, 837527025, 848612385, 859193865, 19994251455, 20217344325, 102157567401, 103187226801, 312536252003, 315404588903, 9227046511387
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Frank A. Haight, and Robert B. Jones., "A probabilistic treatment of qualitative data with special reference to word association tests." Journal of Mathematical Psychology 11.3 (1974): 237-244. [Denominators of fractions in Eq. 21.] [Annotated scanned copy]
- Frank A. Haight and N. J. A. Sloane, Correspondence, 1975
- Yilmaz Simsek, Derivation of Computational Formulas for certain class of finite sums: Approach to Generating functions arising from p-adic integrals and special functions, arXiv:2108.10756 [math.NT], 2021.
Programs
-
GAP
List([1..30],n->Sum([1..n],k->1/k)*Lcm([1..n])); # Muniru A Asiru, Apr 02 2018
-
Magma
[HarmonicNumber(n)*Lcm([1..n]):n in [1..30]]; // Marius A. Burtea, Aug 07 2019
-
Maple
a:= n-> add(1/k, k=1..n)*ilcm($1..n): seq(a(n), n=1..30); # Alois P. Heinz, Mar 14 2013
-
Mathematica
Table[HarmonicNumber[n]*LCM @@ Range[n], {n, 27}] (* Arkadiusz Wesolowski, Mar 29 2012 *)
-
PARI
a(n) = sum(k=1, n, 1/k)*lcm([1..n]); \\ Michel Marcus, Apr 02 2018
Formula
a(n) = Sum_{k=1..n} lcm(1,2,...,n)/k. - Thomas Ordowski, Aug 07 2019
Comments