cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025529 a(n) = (1/1 + 1/2 + ... + 1/n)*lcm{1,2,...,n}.

Original entry on oeis.org

1, 3, 11, 25, 137, 147, 1089, 2283, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 825887397, 837527025, 848612385, 859193865, 19994251455, 20217344325, 102157567401, 103187226801, 312536252003, 315404588903, 9227046511387
Offset: 1

Views

Author

Keywords

Comments

First column of A027446. - Eric Desbiaux, Mar 29 2013
From Amiram Eldar and Thomas Ordowski, Aug 07 2019: (Start)
By Wolstenholme's theorem, if p > 3 is a prime, then p^2 | a(p-1).
Conjecture: for n > 3, if n^2 | a(n-1), then n is a prime.
Note that if n = p^2 with prime p > 3, then n | a(n-1).
It seems that composite numbers n such that n | a(n-1) are only the squares n = p^2 of primes p > 3.
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164.
The n-th triangular number n(n+1)/2 | a(n) for n = 1, 2, 6, 4422, ... (End)

Crossrefs

Differs from A096617 at 7th term.

Programs

  • GAP
    List([1..30],n->Sum([1..n],k->1/k)*Lcm([1..n])); # Muniru A Asiru, Apr 02 2018
    
  • Magma
    [HarmonicNumber(n)*Lcm([1..n]):n in [1..30]]; // Marius A. Burtea, Aug 07 2019
  • Maple
    a:= n-> add(1/k, k=1..n)*ilcm($1..n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 14 2013
  • Mathematica
    Table[HarmonicNumber[n]*LCM @@ Range[n], {n, 27}] (* Arkadiusz Wesolowski, Mar 29 2012 *)
  • PARI
    a(n) = sum(k=1, n, 1/k)*lcm([1..n]); \\ Michel Marcus, Apr 02 2018
    

Formula

a(n) = A001008(n)*A110566(n). - Arkadiusz Wesolowski, Mar 29 2012
a(n) = Sum_{k=1..n} lcm(1,2,...,n)/k. - Thomas Ordowski, Aug 07 2019