A025756
3rd-order Vatalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 4, 22, 139, 949, 6808, 50548, 384916, 2988418, 23559826, 188061592, 1516680130, 12337999870, 101111413540, 833914857316, 6916004156083, 57638242134229, 482444724374734, 4053815358183454, 34181335453533439
Offset: 0
Row sums of triangle
A048966, n > 0.
-
A025756 := proc(n)
coeftayl( 3/(2+(1-9*x)^(1/3)), x=0, n);
end proc:
seq(A025756(n), n=0..30); # Wesley Ivan Hurt, Aug 02 2014
-
Table[SeriesCoefficient[3/(2+(1-9*x)^(1/3)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
a[0]:1$ a[n]:=(1/n)*((9*n-6)*a[n-1]-2*sum(a[k]*a[n-1-k], k, 0, n-1))$ makelist(a[n],n,0,1000); /* Tani Akinari, Aug 02 2014 */
A025757
4th-order Vatalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 7, 69, 783, 9597, 123495, 1643397, 22413183, 311466829, 4392857431, 62702224213, 903886452975, 13138698859677, 192337495360071, 2832859169364261, 41946319269028191, 624009420903043821
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- T. M. Richardson, The Super Patalan Numbers, arXiv preprint arXiv:1410.5880, 2014
- T. M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015) # 15.3.3.
a(n), n >= 1, = row sums of triangle
A049213.
-
Table[SeriesCoefficient[4/(3 + (1 - 16*x)^(1/4)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
A025758
5th-order Vatalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 11, 171, 3056, 58916, 1191376, 24896436, 532911346, 11617952106, 256966100966, 5750337968926, 129926216608236, 2959472057112396, 67877180959091156, 1566072624078270516, 36319953436423545851
Offset: 0
a(n), n >= 1, = row sums of triangle
A049223.
-
# Based on Tani Akinari's formula.
h := (n,j) -> ((-1)^n/(-4)^j)*binomial(j/5,n+1)*hypergeom([1,n+1-j/5],[n+2], 1025): a := n -> 2^8*5^(2*n+1)*add(h(n,j), j=1..4):
seq(round(evalf(a(n),64)),n=0..16); # Peter Luschny, Sep 21 2015
-
Table[SeriesCoefficient[5/(4 + (1 - 25*x)^(1/5)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
-
a(n):=(256/205)*41^(-n)*sum(sum((-4)^(-k)*(-1025)^m*binomial(k/5,m),k,0,4),m,0,n); /* Tani Akinari, Sep 16 2015 */
A025759
6th-order Vatalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 16, 361, 9346, 260710, 7622290, 230167345, 7116228250, 224012186830, 7152402830440, 230999414308090, 7531444277855740, 247510726140787240, 8189274963276187990, 272537576338530727585, 9116110475685684958810, 306286229879232067776310
Offset: 0
a(n), n >= 1, = row sums of triangle
A049224.
-
Table[SeriesCoefficient[6/(5 + (1 - 36*x)^(1/6)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
-
a[0]:1$ a[1]:1$ a[2]:16$ a[3]:361$ a[4]:9346$ a[5]:260710$
a[n]:=((n-1)*(n-2)*(n-3)*(n-4)*(78119*n-273420)*a[n-1]-90*(n-2)*(n-3)*(n-4)*(62494*n^2-499959*n+1014685)*a[n-2]+180*(n-3)*(n-4)*(1124856*n^3-15185808*n^2+68852647*n-104826890)*a[n-3]-3240*(n-4)*(1124784*n^4-22496184*n^3+169193274*n^2-567111339*n+714764687)*a[n-4]+5184*(5060556*n^5-139170960*n^4+1530231885*n^3-8408803050*n^2+23092951859*n-25356134300)*a[n-5]+93312*(2*n-11)*(3*n-16)*(3*n-17)*(6*n-31)*(6*n-35)*a[n-6])/(434*n*(n-1)*(n-2)*(n-3)*(n-4));
makelist(a[n],n,0,500); /* Tani Akinari, Sep 15 2015 */
-
default(seriesprecision, 40); Vec(6/(5+(1-36*x)^(1/6)) + O(x^30)) \\ Michel Marcus, Sep 15 2015
A025760
7th-order Vatalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 22, 680, 24074, 917414, 36618492, 1508943612, 63643109727, 2732349490669, 118957846271104, 5237911268468572, 232794783971436296, 10427673857731312064, 470213556090357498728, 21325335129901497816528
Offset: 0
-
Table[SeriesCoefficient[7/(6 + (1 - 49*x)^(1/7)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
A025762
9th-order Vatalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 37, 1909, 112483, 7123123, 472012183, 32269160215, 2256940619488, 160620490138312, 11588554266307408, 845405636848547320, 62239772654736987376, 4617428134374127211320, 344799253687326693132448
Offset: 0
-
Table[SeriesCoefficient[9/(8 + (1 - 81 x)^(1/9)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
A025763
10th-order Vatalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 46, 2941, 214486, 16801306, 1376657776, 116346220021, 10057692309166, 884572748725086, 78862377561315156, 7108473985655908626, 646575307673212875996, 59260508917444358016516
Offset: 0
-
Table[SeriesCoefficient[10/(9 + (1 - 100 x)^(1/10)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
CoefficientList[Series[10/(9+Surd[1-100x,10]),{x,0,20}],x] (* Harvey P. Dale, Feb 12 2017 *)
Showing 1-7 of 7 results.