cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A027753 Primes of form n^2 + n + 3.

Original entry on oeis.org

3, 5, 23, 59, 113, 383, 509, 653, 1193, 1409, 3083, 4973, 6323, 8933, 10103, 12659, 17033, 19463, 23873, 24809, 25763, 29759, 30803, 35159, 36293, 47309, 48623, 52673, 54059, 62753, 67343, 68909, 75353, 83813, 87323, 92723, 94559
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..350] | IsPrime(a) where a is n^2+n+3 ]; // Vincenzo Librandi, Dec 29 2010

Formula

a(n) = A027752(n)^2 + A027752(n) + 3. - Seiichi Manyama, Mar 19 2017

A027714 Numbers k such that k^2+k+3 is a palindrome.

Original entry on oeis.org

0, 1, 2, 5, 19, 23, 60, 71, 175, 179, 184, 243, 753, 2431, 6154, 23111, 30947, 73188, 75146, 230663, 237721, 598350, 3093852, 5492899, 17605724, 18886025, 30909092, 62127180, 76675186, 177865385, 230098566, 309230287, 549199524, 589167859, 726714741
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    npalQ[n_]:=Module[{c=n^2+n+3},c==IntegerReverse[c]]; Select[Range[ 0,31*10^5],npalQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A027715 Palindromes of form k^2 + k + 3.

Original entry on oeis.org

3, 5, 9, 33, 383, 555, 3663, 5115, 30803, 32223, 34043, 59295, 567765, 5912195, 37877873, 534141435, 957747759, 5356556535, 5646996465, 53205650235, 56511511565, 358023320853, 9571923291759, 30171944917103, 309961535169903, 356681959186653, 955371999173559
Offset: 1

Views

Author

Keywords

Comments

Palindromes h such that 4*h - 11 is a square. - Bruno Berselli, Aug 29 2018

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 3; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A161863 Numbers k such that k^2+k+3 and k^2+k-3 are both prime.

Original entry on oeis.org

4, 7, 10, 22, 25, 34, 70, 79, 112, 130, 139, 172, 187, 217, 229, 262, 274, 295, 304, 322, 337, 364, 397, 400, 472, 499, 574, 580, 592, 622, 634, 655, 664, 697, 829, 844, 925, 1057, 1144, 1165, 1255, 1300, 1309, 1357, 1414, 1420, 1489, 1537, 1642, 1669, 1744
Offset: 1

Views

Author

Keywords

Examples

			4 is in the list because 16+4+-3 = 23 and 17 are primes.
7 is in the list because 49+7+-3 = 53 and 59 are primes.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..1750]| IsPrime(k^2+k+3) and IsPrime(k^2+k-3)]; // Marius A. Burtea, Feb 17 2020
  • Mathematica
    q=3;lst3={};Do[p=n^2+n;If[PrimeQ[p-q]&&PrimeQ[p+q],AppendTo[lst3,n]],{n,0,7!}];lst3
    Select[Range[2000],AllTrue[#^2+#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 01 2019 *)

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A289356 Least number k such that n^2 + n + k is prime.

Original entry on oeis.org

2, 1, 1, 1, 3, 1, 1, 3, 1, 7, 3, 5, 1, 9, 1, 1, 5, 1, 5, 3, 1, 1, 3, 5, 1, 3, 7, 1, 9, 7, 7, 5, 5, 1, 3, 17, 29, 3, 1, 7, 17, 1, 5, 9, 7, 11, 17, 11, 5, 9, 1, 5, 11, 17, 1, 3, 11, 1, 11, 1, 11, 11, 1, 17, 17, 7, 1, 5, 11, 1, 3, 1, 5, 5, 7, 1, 5, 1, 1, 3, 1, 11, 17, 5, 11, 11
Offset: 0

Views

Author

Gionata Neri, Jul 03 2017

Keywords

Comments

a(A002384(n)) = 1.
a(A027752(n)) = 3, for n > 2.

Crossrefs

Cf. A002378, A002384, A013632, A027752, A182047 (resulting primes).

Programs

  • Maple
    seq(nextprime(n^2+n)-(n^2+n), n=0..100); # Robert Israel, Jul 05 2017
  • Mathematica
    Table[k = 1; While[! PrimeQ[n^2 + n + k], k++]; k, {n, 0, 85}] (* Michael De Vlieger, Jul 04 2017 *)
  • PARI
    for(n=0,85,k={my(k=1);while(!isprime(n^2+n+k),k++);k;};print1(k", "))

Formula

a(n) = A013632(A002378(n)). - Robert Israel, Jul 05 2017
Showing 1-5 of 5 results.