A050267
Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.
Original entry on oeis.org
10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
- Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- G. W. Fung and H. C. Williams, Quadratic polynomials which have a high density of prime values, Math. Comput. 55(191) (1990), 345-353.
- Carlos Rivera, Problem 12: Prime producing polynomials, The Prime Puzzles & Problems Connection.
- Jitender Singh, Prime numbers and factorization of polynomials, arXiv:2411.18366 [math.NT], 2024.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
Cf.
A002383,
A005471,
A005846,
A007635,
A022464,
A027753,
A027755,
A027758,
A048059,
A050267,
A050268,
A116206,
A117081,
A267252.
-
lst={};Do[p=47*n^2-1701*n+10181;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 29 2009 *)
Select[Table[47n^2-1701n+10181,{n,0,50}],PrimeQ] (* Harvey P. Dale, Oct 03 2011 *)
-
[n | n <- apply(m->47*m^2-1701*m+10181, [0..100]), isprime(abs(n))] \\ Charles R Greathouse IV, Jun 18 2017
A027752
Numbers k such that k^2 + k + 3 is prime.
Original entry on oeis.org
0, 1, 4, 7, 10, 19, 22, 25, 34, 37, 55, 70, 79, 94, 100, 112, 130, 139, 154, 157, 160, 172, 175, 187, 190, 217, 220, 229, 232, 250, 259, 262, 274, 289, 295, 304, 307, 322, 325, 334, 337, 364, 367, 370, 382, 397, 400, 415, 439, 442, 472, 475, 484
Offset: 1
A027714
Numbers k such that k^2+k+3 is a palindrome.
Original entry on oeis.org
0, 1, 2, 5, 19, 23, 60, 71, 175, 179, 184, 243, 753, 2431, 6154, 23111, 30947, 73188, 75146, 230663, 237721, 598350, 3093852, 5492899, 17605724, 18886025, 30909092, 62127180, 76675186, 177865385, 230098566, 309230287, 549199524, 589167859, 726714741
Offset: 1
-
npalQ[n_]:=Module[{c=n^2+n+3},c==IntegerReverse[c]]; Select[Range[ 0,31*10^5],npalQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)
A027715
Palindromes of form k^2 + k + 3.
Original entry on oeis.org
3, 5, 9, 33, 383, 555, 3663, 5115, 30803, 32223, 34043, 59295, 567765, 5912195, 37877873, 534141435, 957747759, 5356556535, 5646996465, 53205650235, 56511511565, 358023320853, 9571923291759, 30171944917103, 309961535169903, 356681959186653, 955371999173559
Offset: 1
-
palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 3; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)
A302445
Triangle read by rows: row n gives primes of form k^2 + n - k for 0 < k < n.
Original entry on oeis.org
2, 3, 5, 5, 7, 11, 17, 7, 13, 19, 37, 11, 29, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 13, 19, 43, 103, 17, 71, 197, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 19, 31, 61, 109, 151, 229, 23, 41, 131, 293, 401, 23, 29, 43, 53, 79, 113, 179, 233, 263, 443
Offset: 2
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
---+-----------------------------------------------------------------------
2| 2;
3| 3, 5;
4|
5| 5, 7, 11, 17;
6|
7| 7, , 13, 19, , 37;
8|
9| , 11, , , 29, , , ;
10|
11| 11, 13, 17, 23, 31, 41, 53, 67, 83, 101;
12|
13| 13, , 19, , , 43, , , , 103, , ;
14|
15| , 17, , , , , , 71, , , , , , 197;
16|
17| 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
-
a:=Filtered(Flat(List([1..10],n->List([1..n],k->k^2+n-k))),IsPrime); # Muniru A Asiru, Apr 09 2018
-
Map[Union@ Select[#, PrimeQ] &, Table[k^2 + n - k, {n, 23}, {k, 0, n}]] // Flatten (* Michael De Vlieger, Apr 10 2018 *)
A128878
Primes of the form 47*n^2 - 1701*n + 10181.
Original entry on oeis.org
10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387, 34057, 36821, 39679, 45677, 48817, 52051, 65927, 81307, 89561, 102647, 107197, 116579, 126337, 131357
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Apr 17 2007
47k^2 - 1701k + 10181 = 21647 for k = 42.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, ISBN 0-387-20860-7, Section A17, page 59.
Cf.
A050267,
A002383,
A027753,
A027755,
A005471,
A027758,
A048059,
A007635,
A005846,
A116206,
A050268,
A022464.
-
Select[Table[47*n^2 - 1701*n + 10181, {n, 0, 100}], # > 0 && PrimeQ[#] &] (* T. D. Noe, Aug 02 2011 *)
A333040
Even numbers m such that sigma(m) < sigma(m-1).
Original entry on oeis.org
46, 106, 118, 166, 226, 274, 298, 316, 346, 358, 406, 466, 514, 526, 562, 586, 622, 694, 706, 766, 778, 826, 838, 862, 886, 946, 1006, 1114, 1126, 1156, 1186, 1198, 1282, 1306, 1366, 1396, 1426, 1486, 1522, 1546, 1576, 1594, 1618, 1702, 1726, 1756
Offset: 1
166 = 2*83 and 165 = 3*5*11, as 252 = sigma(166) < sigma(165) = 288, hence 166 is a term.
386 = 2*193 and 385 = 5*7*11, as 582 = sigma(386) > sigma(385)= 576, hence 386 is not a term.
766 = 2*383 where 383 = 19^2+19+3 and 765 = 3^2*5*13, as 1152 = sigma(766) < sigma(765) = 1404, hence 766 is a term.
1018 = 2*509 where 509 = 22^2+22+3, and 1017 = 3^2*113, as 1530 = sigma(1018) > sigma(1017) = 1482, hence 1018 is not a term.
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 620 pp. 82, 280, Ellipses Paris 2004.
-
filter:= n -> numtheory:-sigma(n) < numtheory:-sigma(n-1):
select(filter, [seq(i,i=2..2000,2)]); # Robert Israel, Mar 29 2020
-
Select[2 * Range[1000], DivisorSigma[1, #] < DivisorSigma[1, #-1] &] (* Amiram Eldar, Mar 24 2020 *)
-
isok(m) = !(m%2) && (sigma(m) < sigma(m-1)); \\ Michel Marcus, Mar 22 2020
A268101
Smallest prime p such that some polynomial of the form a*x^2 - b*x + p generates distinct primes in absolute value for x = 1 to n, where 0 < a < p and 0 <= b < p.
Original entry on oeis.org
2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 647, 1277, 1979, 2753
Offset: 1
a(1) = 2 (a prime), x^2 + 2 gives a prime for x = 1.
a(2) = 3 (a prime), 2*x^2 + 3 gives distinct primes for x = 1 to 2.
a(4) = 5 (a prime), 2*x^2 + 5 gives distinct primes for x = 1 to 4.
a(6) = 7 (a prime), 4*x^2 + 7 gives distinct primes for x = 1 to 6.
a(10) = 11 (a prime), 2*x^2 + 11 gives distinct primes for x = 1 to 10.
a(12) = 13 (a prime), 6*x^2 + 13 gives distinct primes for x = 1 to 12.
a(16) = 17 (a prime), 6*x^2 + 17 gives distinct primes for x = 1 to 16.
a(18) = 19 (a prime), 10*x^2 + 19 gives distinct primes for x = 1 to 18.
a(22) = 23 (a prime), 3*x^2 - 3*x + 23 gives distinct primes for x = 1 to 22.
a(28) = 29 (a prime), 2*x^2 + 29 gives distinct primes for x = 1 to 28.
a(29) = 31 (a prime), 2*x^2 - 4*x + 31 gives distinct primes for x = 1 to 29.
a(40) = 41 (a prime), x^2 - x + 41 gives distinct primes for x = 1 to 40.
a(41) = 647 (a prime), abs(36*x^2 - 594*x + 647) gives distinct primes for x = 1 to 41.
a(42) = 1277 (a prime), abs(36*x^2 - 666*x + 1277) gives distinct primes for x = 1 to 42.
a(43) = 1979 (a prime), abs(36*x^2 - 738*x + 1979) gives distinct primes for x = 1 to 43.
a(44) = 2753 (a prime), abs(36*x^2 - 810*x + 2753) gives distinct primes for x = 1 to 44.
Cf.
A027688,
A027753,
A027690,
A027755,
A048058,
A048059,
A007635,
A007639,
A007637,
A007641,
A202018,
A005846,
A117081,
A050268,
A268109.
A309844
Primes of the form n^4 + n^2 + 3.
Original entry on oeis.org
3, 5, 23, 653, 10103, 83813, 160403, 234743, 280373, 1049603, 3420653, 6252503, 11319863, 52207853, 92246423, 146422103, 174913853, 221548343, 442071653, 479807123, 577224653, 607597853, 655385603, 937921253, 1222865933, 1249233683, 1387525253, 1506177293
Offset: 1
-
a = [];
for n = 0:1e3
x = n.^4+n.^2+3;
if isprime(x); a = [a,x]; end;
end
-
f[n_] := n^4 + n^2 + 3; Select[f /@ Range[0, 200], PrimeQ] (* Amiram Eldar, Aug 24 2019 *)
-
from sympy import isprime
a = []
for n in range(0,1000):
x = n**4+n**2+3
if isprime(x):
a.append(x)
Showing 1-9 of 9 results.
Comments