cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A050267 Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.

Original entry on oeis.org

10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
Offset: 1

Views

Author

Keywords

Comments

Terms are listed in the order of their appearance in sequence b.
This is a transformed version of the polynomial P(x) = 47*x^2 + 9*x - 5209 whose absolute value gives 43 distinct primes for -24 <= x <= 18, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane, May 10 2007
Further edited by Klaus Brockhaus, Mar 20 2010
More terms (to distinguish from quadratic) from Charles R Greathouse IV, Jun 18 2017

A027752 Numbers k such that k^2 + k + 3 is prime.

Original entry on oeis.org

0, 1, 4, 7, 10, 19, 22, 25, 34, 37, 55, 70, 79, 94, 100, 112, 130, 139, 154, 157, 160, 172, 175, 187, 190, 217, 220, 229, 232, 250, 259, 262, 274, 289, 295, 304, 307, 322, 325, 334, 337, 364, 367, 370, 382, 397, 400, 415, 439, 442, 472, 475, 484
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A027714 Numbers k such that k^2+k+3 is a palindrome.

Original entry on oeis.org

0, 1, 2, 5, 19, 23, 60, 71, 175, 179, 184, 243, 753, 2431, 6154, 23111, 30947, 73188, 75146, 230663, 237721, 598350, 3093852, 5492899, 17605724, 18886025, 30909092, 62127180, 76675186, 177865385, 230098566, 309230287, 549199524, 589167859, 726714741
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    npalQ[n_]:=Module[{c=n^2+n+3},c==IntegerReverse[c]]; Select[Range[ 0,31*10^5],npalQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A027715 Palindromes of form k^2 + k + 3.

Original entry on oeis.org

3, 5, 9, 33, 383, 555, 3663, 5115, 30803, 32223, 34043, 59295, 567765, 5912195, 37877873, 534141435, 957747759, 5356556535, 5646996465, 53205650235, 56511511565, 358023320853, 9571923291759, 30171944917103, 309961535169903, 356681959186653, 955371999173559
Offset: 1

Views

Author

Keywords

Comments

Palindromes h such that 4*h - 11 is a square. - Bruno Berselli, Aug 29 2018

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 3; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A302445 Triangle read by rows: row n gives primes of form k^2 + n - k for 0 < k < n.

Original entry on oeis.org

2, 3, 5, 5, 7, 11, 17, 7, 13, 19, 37, 11, 29, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 13, 19, 43, 103, 17, 71, 197, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 19, 31, 61, 109, 151, 229, 23, 41, 131, 293, 401, 23, 29, 43, 53, 79, 113, 179, 233, 263, 443
Offset: 2

Views

Author

Seiichi Manyama, Apr 08 2018

Keywords

Examples

			  n\k|  1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16
  ---+-----------------------------------------------------------------------
    2|  2;
    3|  3,  5;
    4|
    5|  5,  7, 11, 17;
    6|
    7|  7,   , 13, 19,   , 37;
    8|
    9|   , 11,   ,   , 29,   ,   ,   ;
   10|
   11| 11, 13, 17, 23, 31, 41, 53, 67, 83, 101;
   12|
   13| 13,   , 19,   ,   , 43,   ,   ,   , 103,    ,    ;
   14|
   15|   , 17,   ,   ,   ,   ,   , 71,   ,    ,    ,    ,    , 197;
   16|
   17| 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
		

Crossrefs

Row n: A027753 (n=3), A027755 (n=5), A048059 (n=11), A007635 (n=17), A005846 (n=41).

Programs

  • GAP
    a:=Filtered(Flat(List([1..10],n->List([1..n],k->k^2+n-k))),IsPrime); # Muniru A Asiru, Apr 09 2018
  • Mathematica
    Map[Union@ Select[#, PrimeQ] &, Table[k^2 + n - k, {n, 23}, {k, 0, n}]] // Flatten (* Michael De Vlieger, Apr 10 2018 *)

A128878 Primes of the form 47*n^2 - 1701*n + 10181.

Original entry on oeis.org

10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387, 34057, 36821, 39679, 45677, 48817, 52051, 65927, 81307, 89561, 102647, 107197, 116579, 126337, 131357
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 17 2007

Keywords

Comments

Primes are given in the order in which they arise for increasing n.
Polynomial generates 22 primes for 0 <= n <= 42, i.e., for n = 0, 1, 2, 3, 4, 5, 6, 7, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42.
If the definition is replaced by "Numbers n of the form 47*k^2 - 1701*k + 10181 such that either n or -n is a prime" we get (essentially) A050267.

Examples

			47k^2 - 1701k + 10181 = 21647 for k = 42.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, ISBN 0-387-20860-7, Section A17, page 59.

Crossrefs

Programs

  • Mathematica
    Select[Table[47*n^2 - 1701*n + 10181, {n, 0, 100}], # > 0 && PrimeQ[#] &] (* T. D. Noe, Aug 02 2011 *)

Extensions

Edited by Klaus Brockhaus, Apr 22 2007 and by N. J. A. Sloane, May 05 2007 and May 06 2007

A333040 Even numbers m such that sigma(m) < sigma(m-1).

Original entry on oeis.org

46, 106, 118, 166, 226, 274, 298, 316, 346, 358, 406, 466, 514, 526, 562, 586, 622, 694, 706, 766, 778, 826, 838, 862, 886, 946, 1006, 1114, 1126, 1156, 1186, 1198, 1282, 1306, 1366, 1396, 1426, 1486, 1522, 1546, 1576, 1594, 1618, 1702, 1726, 1756
Offset: 1

Views

Author

Bernard Schott, Mar 22 2020

Keywords

Comments

The even terms of A333039 represent about only 7% of the data, so they are proposed in this sequence. Some of these integers are semiprimes with for example these two families:
1) m = 2*p with p prime of the form k^2+k+3 is in A027753. The first few terms are: 46, 118, 226, 766, ... but not all the integers of this form are terms; the first 3 counterexamples are 6, 10, 1018 (see examples).
2) m = 2*p with p prime = (r*s*t+1)/2 and 2A234103. The first few terms are: 106, 166, 274, 346, 358, ... but not all the integers of this form are terms; the first 3 counterexamples are 386, 898 and 958 (see examples).
There is also this subsequence of even m = 2^2*p where p prime, congruent to 34 mod 45, is in A142330. The first few terms are: 316, 1396, 1756, 2416, ... but not all the integers of this form are terms; the first counterexample that comes from the 8th term of A142330 is 5716.
Even (and odd) numbers such that sigma(m) = sigma(m-1) are in A231546.

Examples

			166 = 2*83 and 165 = 3*5*11, as 252 = sigma(166) < sigma(165) = 288, hence 166 is a term.
386 = 2*193 and 385 = 5*7*11, as 582 = sigma(386) > sigma(385)= 576, hence 386 is not a term.
766 = 2*383 where 383 = 19^2+19+3 and 765 = 3^2*5*13, as 1152 = sigma(766) < sigma(765) = 1404, hence 766 is a term.
1018 = 2*509 where 509 = 22^2+22+3, and 1017 = 3^2*113, as 1530 = sigma(1018) > sigma(1017) = 1482, hence 1018 is not a term.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 620 pp. 82, 280, Ellipses Paris 2004.

Crossrefs

Intersection of A005843 and A333039.
Subsequence of A333038.
Cf. A231546.

Programs

  • Maple
    filter:= n -> numtheory:-sigma(n) < numtheory:-sigma(n-1):
    select(filter, [seq(i,i=2..2000,2)]); # Robert Israel, Mar 29 2020
  • Mathematica
    Select[2 * Range[1000], DivisorSigma[1, #] < DivisorSigma[1, #-1] &] (* Amiram Eldar, Mar 24 2020 *)
  • PARI
    isok(m) = !(m%2) && (sigma(m) < sigma(m-1)); \\ Michel Marcus, Mar 22 2020

A268101 Smallest prime p such that some polynomial of the form a*x^2 - b*x + p generates distinct primes in absolute value for x = 1 to n, where 0 < a < p and 0 <= b < p.

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 647, 1277, 1979, 2753
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 26 2016

Keywords

Examples

			a(1) = 2 (a prime), x^2 + 2 gives a prime for x = 1.
a(2) = 3 (a prime), 2*x^2 + 3 gives distinct primes for x = 1 to 2.
a(4) = 5 (a prime), 2*x^2 + 5 gives distinct primes for x = 1 to 4.
a(6) = 7 (a prime), 4*x^2 + 7 gives distinct primes for x = 1 to 6.
a(10) = 11 (a prime), 2*x^2 + 11 gives distinct primes for x = 1 to 10.
a(12) = 13 (a prime), 6*x^2 + 13 gives distinct primes for x = 1 to 12.
a(16) = 17 (a prime), 6*x^2 + 17 gives distinct primes for x = 1 to 16.
a(18) = 19 (a prime), 10*x^2 + 19 gives distinct primes for x = 1 to 18.
a(22) = 23 (a prime), 3*x^2 - 3*x + 23 gives distinct primes for x = 1 to 22.
a(28) = 29 (a prime), 2*x^2 + 29 gives distinct primes for x = 1 to 28.
a(29) = 31 (a prime), 2*x^2 - 4*x + 31 gives distinct primes for x = 1 to 29.
a(40) = 41 (a prime), x^2 - x + 41 gives distinct primes for x = 1 to 40.
a(41) = 647 (a prime), abs(36*x^2 - 594*x + 647) gives distinct primes for x = 1 to 41.
a(42) = 1277 (a prime), abs(36*x^2 - 666*x + 1277) gives distinct primes for x = 1 to 42.
a(43) = 1979 (a prime), abs(36*x^2 - 738*x + 1979) gives distinct primes for x = 1 to 43.
a(44) = 2753 (a prime), abs(36*x^2 - 810*x + 2753) gives distinct primes for x = 1 to 44.
		

Crossrefs

A309844 Primes of the form n^4 + n^2 + 3.

Original entry on oeis.org

3, 5, 23, 653, 10103, 83813, 160403, 234743, 280373, 1049603, 3420653, 6252503, 11319863, 52207853, 92246423, 146422103, 174913853, 221548343, 442071653, 479807123, 577224653, 607597853, 655385603, 937921253, 1222865933, 1249233683, 1387525253, 1506177293
Offset: 1

Views

Author

Christopher R. Madan, Aug 19 2019

Keywords

Comments

Digital root of all values > 3 is 5, compare A017221.

Crossrefs

Subset of A027753. Subset of A017221.

Programs

  • MATLAB
    a = [];
    for n = 0:1e3
        x = n.^4+n.^2+3;
        if isprime(x); a = [a,x]; end;
    end
    
  • Mathematica
    f[n_] := n^4 + n^2 + 3; Select[f /@ Range[0, 200], PrimeQ] (* Amiram Eldar, Aug 24 2019 *)
  • Python
    from sympy import isprime
    a = []
    for n in range(0,1000):
        x = n**4+n**2+3
        if isprime(x):
            a.append(x)
Showing 1-9 of 9 results.