cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007850 Giuga numbers: composite numbers n such that p divides n/p - 1 for every prime divisor p of n.

Original entry on oeis.org

30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506
Offset: 1

Views

Author

D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn

Keywords

Comments

There are no other Giuga numbers with 8 or fewer prime factors. I did an exhaustive search using a PARI script which implemented Borwein and Girgensohn's method for finding n factor solutions given n - 2 factors. - Fred Schneider, Jul 04 2006
One further Giuga number is known with 10 prime factors, namely:
420001794970774706203871150967065663240419575375163060922876441614\
2557211582098432545190323474818 =
2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519 * 8491659218261819498490029296021 * 58254480569119734123541298976556403 but this may not be the next term. (See the Butske et al. paper.)
Conjecture: Giuga numbers are the solution of the differential equation n' = n + 1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
n is a Giuga number if and only if n' = a*n + 1 for some integer a > 0 (see our preprint in arXiv:1103.2298). - José María Grau Ribas, Mar 19 2011
A composite number n is a Giuga number if and only if Sum_{i = 1..n-1} i^phi(n) == -1 (mod n), where phi(n) = A000010(n). - Jonathan Sondow, Jan 03 2014
A composite number n is a Giuga number if and only if Sum_{prime p|n} 1/p = 1/n + an integer. (In fact, all known Giuga numbers n satisfy Sum_{prime p|n} 1/p = 1/n + 1.) - Jonathan Sondow, Jan 08 2014
The prime factors of a(n) are listed as n-th row of A236434. - M. F. Hasler, Jul 13 2015
Conjecture: let k = a(n) and k be the product of x(n) distinct prime factors where x(n) <= x(n+1). Then, for any even n, n/2 + 2 <= x(n) <= n/2 + 3 and, for any odd n, (n+1)/2 + 2 <= x(n) <= (n+1)/2 + 3. For any n > 1, there are y "old" distinct prime factors o(1)...o(y) such that o(1) = 2, o(2) = 3, and z "new" distinct prime factors n(1)...n(z) such that none of them - unlike the "old" ones - can be a divisor of a(q) while q < n; n(1) > o(y), y = x(n) - z >= 2, 2 <= z <= b where b is either 4, or 1/2*n. - Sergey Pavlov, Feb 24 2017
Conjecture: a composite n is a Giuga number if and only if Sum_{k=1..n-1} k^lambda(n) == -1 (mod n), where lambda(n) = A002322(n). - Thomas Ordowski and Giovanni Resta, Jul 25 2018
A composite number n is a Giuga number if and only if A326690(n) = 1. - Jonathan Sondow, Jul 19 2019
A composite n is a Giuga number if and only if n * A027641(phi(n)) == - A027642(phi(n)) (mod n^2). Note: Euler's phi function A000010 can be replaced by the Carmichael lambda function A002322. - Thomas Ordowski, Jun 07 2020
By von Staudt and Clausen theorem, a composite n is a Giuga number if and only if n * A027759(phi(n)) == A027760(phi(n)) (mod n^2). Note: Euler's phi function can be replaced by the Carmichael lambda function. - Thomas Ordowski, Aug 01 2020

Examples

			From _M. F. Hasler_, Jul 13 2015: (Start)
The prime divisors of 30 are {2, 3, 5}, and 2 divides 30/2-1 = 14, 3 divides 30/3-1 = 9, and 5 divides 30/5-1 = 5.
The prime divisors of 858 are {2, 3, 11, 13} and 858/2-1 = 428 is even, 858/3-1 = 285 is divisible by 3, 858/11-1 = 77 is a multiple of 11, and 858/13-1 = 65 = 13*5.
(End)
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 30, pp 11, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := AllTrue[First /@ FactorInteger@ n, Divisible[n/# - 1, #] &]; Select[Range@ 100000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Oct 05 2015 *)
  • PARI
    is(n)=if(isprime(n), return(0)); my(f=factor(n)[,1]); for(i=1,#f, if((n/f[i])%f[i]!=1, return(0))); n>1 \\ Charles R Greathouse IV, Apr 28 2015
    
  • Python
    from itertools import count, islice
    from sympy import isprime, primefactors
    def A007850_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda x: not isprime(x) and all((x//p-1) % p == 0 for p in primefactors(x)), count(max(startvalue,2)))
    A007850_list = list(islice(A007850_gen(),4)) # Chai Wah Wu, Feb 19 2022

Formula

Sum_{i = 1..a(n)-1} i^phi(a(n)) == -1 (mod a(n)). - Jonathan Sondow, Jan 03 2014

Extensions

a(12) from Fred Schneider, Jul 04 2006
Further references from Fred Schneider, Aug 19 2006
Definition corrected by Jonathan Sondow, Sep 16 2012

A027760 Denominator of Sum_{p prime, p-1 divides n} 1/p.

Original entry on oeis.org

2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2
Offset: 1

Views

Author

Keywords

Comments

The GCD of integers x^(n+1)-x, for all integers x. - Roger Cuculiere (cuculier(AT)imaginet.fr), Jan 19 2002
If each x in a ring satisfies x^(n+1)=x, the characteristic of the ring is a divisor of a(n) (Rosenblum 1977). - Daniel M. Rosenblum (DMRosenblum(AT)world.oberlin.edu), Sep 24 2008
The denominators of the Bernoulli numbers for n>0. B_n sequence begins 1, -1/2, 1/6, 0/2, -1/30, 0/2, 1/42, 0/2, ... This is an alternative version of A027642 suggested by the theorem of Clausen. To add a(0) = 1 has been proposed in A141056. - Peter Luschny, Apr 29 2009
For N > 1, a(n) is the greatest number k such that x*y^n ==y*x^n (mod k) for any integers x and y. Example: a(19) = 798 because x*y^19 ==y*x^19 (mod 798). - Michel Lagneau, Apr 21 2012
a(n) is the largest k such that b^(n+1) == b (mod k) for every integer b. - Mateusz Szymański, Feb 18 2016, corrected by Thomas Ordowski, Jul 01 2018
When n is even, a(n) is the product of the distinct primes dividing the denominator of zeta(1-n), where zeta(s) is the Riemann zeta function. - Griffin N. Macris, Jun 13 2016
If n+1 is prime, then A002322(a(n)) = n. Composite numbers n+1 such that A002322(a(n)) = n are in A317210. - Max Alekseyev and Thomas Ordowski, Jul 09 2018

Examples

			1/2, 5/6, 1/2, 31/30, 1/2, 41/42, 1/2, 31/30, 1/2, 61/66, 1/2, 3421/2730, 1/2, 5/6, 1/2, 557/510, ...
		

Crossrefs

Programs

  • Maple
    A027760 := proc(n) local s,p; s := 0 ; p := 2; while p <= n+1 do if n mod (p-1) = 0 then s := s+1/p; fi; p := nextprime(p) ; od: denom(s) ; end: # R. J. Mathar, Aug 12 2008
  • Mathematica
    clausen[n_] := Product[i, {i, Select[ Map[ # + 1 &, Divisors[n]], PrimeQ]}]
    Table[clausen[i], {i, 1, 20}] (* Peter Luschny, Apr 29 2009 *)
    f[n_] := Times @@ Select[Divisors@n + 1, PrimeQ]; Array[f, 56] (* Robert G. Wilson v, Apr 25 2012 *)
  • PARI
    a(n)=denominator(sumdiv(n,d,if(isprime(d+1),1/(d+1)))) \\ Charles R Greathouse IV, Jul 08 2011
    
  • PARI
    a(n)=my(pr=1);fordiv(n,d,if(isprime(d+1),pr*=d+1));pr \\ Charles R Greathouse IV, Jul 08 2011
    
  • Sage
    def A027760(n):
        return mul(filter(lambda s: is_prime(s), map(lambda i: i+1, divisors(n))))
    [A027760(n) for n in (1..56)]  # Peter Luschny, May 23 2013

Formula

a(2*k) = A091137(2*k)/A091137(2*k-1). - Paul Curtz, Aug 05 2008
a(n) = product_{p prime, p-1 divides n}. - Eric M. Schmidt, Aug 01 2013
a(2n-1) = 2. - Robert G. Wilson v, Jul 23 2018

Extensions

Formula submitted with A141417 added by R. J. Mathar, Nov 17 2010
Showing 1-2 of 2 results.