cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027861 Numbers k such that k^2 + (k+1)^2 is prime.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 12, 14, 17, 19, 22, 24, 25, 29, 30, 32, 34, 35, 39, 42, 47, 50, 60, 65, 69, 70, 72, 79, 82, 84, 85, 87, 90, 97, 99, 100, 102, 104, 109, 110, 115, 122, 130, 135, 137, 139, 144, 149, 154, 157, 160, 162, 164, 167, 172, 174, 185, 187, 189, 195, 199, 202
Offset: 1

Views

Author

Keywords

Comments

k > 1 never ends in 1, 3, 6 or 8 (that is, k*(k+1) does not end in 2). - Lekraj Beedassy, Jul 09 2004
k > 1 can never be congruent to (1 or 3) mod 5, because if it were, then k^2 + (k+1)^2 would be divisible by 5. In other words, for k > 1, this sequence cannot contain any values in A047219. This means that we can immediately discard 40% of all possible k. - Dmitry Kamenetsky, Sep 02 2008

Crossrefs

Complement of A012132.
Cf. A002731 (2k+1 values), A027862 (resulting primes), A091277 (indices of resulting primes).
Cf. A047219 (k mod 5 = 1 or 3), A001844 (centered squares), A010051.

Programs

  • Haskell
    a027861 n = a027861_list !! (n-1)
    a027861_list = filter ((== 1) . a010051 . a001844) [0..]
    -- Reinhard Zumkeller, Jul 13 2014
    
  • Magma
    [n: n in [0..1000] |IsPrime(n^2 + (n+1)^2)]; // Vincenzo Librandi, Nov 19 2010
    
  • Mathematica
    Select[Range[250],PrimeQ[#^2+(#+1)^2]&] (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is(n)=isprime(n^2 + (n+1)^2) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = (A002731(n)-1)/2.
a(n) = (sqrt(2*A027862(n)-1)-1)/2. - Zak Seidov, Jul 22 2013
A010051(A001844(a(n))) = 1. - Reinhard Zumkeller, Jul 13 2014
a(n) = floor(sqrt(A027862(n)/2)). - Rémi Guillaume, Apr 02 2025