A027862 Primes of the form j^2 + (j+1)^2.
5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681
Offset: 1
Examples
13 is in the sequence because it is prime and 13 = 2^2 + 3^2. - _Michael B. Porter_, Aug 27 2016
References
- D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 271.
- Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972. pp. 275.
Links
- T. D. Noe and Zak Seidov, Table of n, a(n) for n = 1..10000
- Patrick De Geest, World!Of Numbers
- Daniel Shanks, An analytic criterion for the existence of infinitely many primes of the form 1/2 * (n^2 + 1), Illinois Journal of Mathematics 8:3 (1964), p. 377-379.
- Wacław Sierpiński, Sur les nombres triangulaires qui sont sommes de deux nombres triangulaires, Elem. Math., 17 (1962), pp. 63-65.
- Panayiotis G. Tsangaris, A sieve for all primes of the form x^2 + (x+1)^2, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 25 (1998), pp. 39-53.
Crossrefs
Programs
-
Magma
[ a: n in [0..150] | IsPrime(a) where a is n^2+(n+1)^2 ]; // Vincenzo Librandi, Dec 18 2010
-
Mathematica
Select[Table[n^2+(n+1)^2,{n,200}],PrimeQ] (* Harvey P. Dale, Aug 22 2012 *) Select[Total/@Partition[Range[200]^2,2,1],PrimeQ] (* Harvey P. Dale, Apr 20 2016 *)
-
PARI
je=[]; for(n=1,500, if(isprime(n^2+(n+1)^2),je=concat(je,n^2+(n+1)^2))); je
-
PARI
fermat(n) = { for(x=1,n, y=2*x*(x+1)+1; if(isprime(y),print1(y" ")) ) }
Formula
a(n) = ((A002731(n)^2 - 1)/2) + 1. - Torlach Rush, Mar 14 2014
a(n) = (A002731(n)^2 + 1)/2. - Zak Seidov, May 01 2014
Extensions
More terms from Cino Hilliard, Mar 16 2003
Comments