A286934 Number of partitions of n into centered square primes (A027862).
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 1, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 5
Offset: 0
Keywords
Examples
a(41) = 2 because we have [41] and [13, 13, 5, 5, 5].
Links
- Eric Weisstein's World of Mathematics, Centered Square Number
- Index entries for sequences related to centered polygonal numbers
- Index entries for sequences related to partitions
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1/(1 - x^k), {k, Select[Range[nmax]^2 + (Range[nmax] + 1)^2, PrimeQ]}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/(1 - x^A027862(k)).
Comments