cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A201365 Expansion of e.g.f. exp(x) / (5 - 4*exp(x)).

Original entry on oeis.org

1, 5, 45, 605, 10845, 243005, 6534045, 204972605, 7348546845, 296387331005, 13282361478045, 654762261324605, 35211177242722845, 2051349014835939005, 128701394409842982045, 8651475271312083756605, 620334325261670875138845, 47259638324026516284867005
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2011

Keywords

Examples

			E.g.f.: E(x) = 1 + 5*x + 45*x^2/2! + 605*x^3/3! + 10845*x^4/4! + 243005*x^5/5! + ...
O.g.f.: A(x) = 1 + 5*x + 45*x^2 + 605*x^3 + 10845*x^4 + 243005*x^5 + ...
where A(x) = 1 + 5*x/(1+x) + 2!*5^2*x^2/((1+x)*(1+2*x)) + 3!*5^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*5^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( 1/(5*Exp(-x) -4) ))); // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series(1/(5*exp(-x) - 4), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    Table[Sum[(-1)^(n-k)*5^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(5-4Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 09 2015 *)
    a[n_]:= If[n<0, 0, PolyLog[ -n, 4/5]/4]; (* Michael Somos, Apr 27 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(5 - 4*exp(x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 5^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=sum(k=0, n, (-1)^(n-k)*5^k*stirling(n, k, 2)*k!)}
    
  • Sage
    [sum( (-1)^(n-j)*5^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} n! * 5^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 5*x/(1-4*x/(1 - 10*x/(1-8*x/(1 - 15*x/(1-12*x/(1 - 20*x/(1-16*x/(1 - 25*x/(1-20*x/(1 - ...))))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 5^k * Stirling2(n,k) * k!.
a(n) = Sum_{k=0..n} A123125(n,k)*5^k*4^(n-k). - Philippe Deléham, Nov 30 2011
a(n) ~ n! / (4*(log(5/4))^(n+1)) . - Vaclav Kotesovec, Jun 13 2013
a(n) = log(5/4) * Integral_{x = 0..oo} (ceiling(x))^n * (5/4)^(-x) dx. - Peter Bala, Feb 14 2015
a(n) = (1/4) Sum_{k>=1} (4/5)^k * n^k. - Michael Somos, Apr 27 2019
a(n) = 1 + 4 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -5*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 5*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (5/4)*A094417(n) - (1/4)*0^n. - Seiichi Manyama, Dec 21 2023

A032183 "CIJ" (necklace, indistinct, labeled) transform of 3,3,3,3...

Original entry on oeis.org

3, 12, 84, 876, 12180, 211692, 4415124, 107430636, 2987482260, 93461994732, 3248794543764, 124223034396396, 5181679901192340, 234153759187726572, 11395053576644512404, 594148263021558162156
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Vladeta Jovovic, Sep 14 2003: (Start)
E.g.f.: -log(4-3*exp(x)).
a(n) = Sum_{k=1..n} 3^k*(k-1)!*Stirling2(n, k). (End)
a(n) ~ (n-1)! / (log(4/3))^n. - Vaclav Kotesovec, Mar 29 2014
a(n) = 3 * (1 + Sum_{k=1..n-1} binomial(n-1,k-1) * a(k)). - Ilya Gutkovskiy, Aug 09 2020

A367489 Expansion of e.g.f. -x * log(3 - 2*exp(x)).

Original entry on oeis.org

0, 0, 4, 18, 120, 1110, 13140, 189042, 3197040, 62093358, 1361253900, 33236925546, 894243758760, 26281928034726, 837663638344260, 28775491618091490, 1059805146165293280, 41657455054069680414, 1740535210734651716220, 77029901631623181859674
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n*sum(k=1, n-1, 2^k*(k-1)!*stirling(n-1, k, 2));

Formula

a(n) = n * Sum_{k=1..n-1} 2^k * (k-1)! * Stirling2(n-1,k).

A032111 "BIJ" (reversible, indistinct, labeled) transform of 2,2,2,2...

Original entry on oeis.org

2, 6, 38, 366, 4502, 66606, 1149878, 22687566, 503589782, 12420052206, 336947795318, 9972186170766, 319727684645462, 11039636939221806, 408406422098722358, 16116066766061589966, 675700891505466507542
Offset: 1

Views

Author

Keywords

Crossrefs

Equals A050351(n) + 1. Cf. A004123, A027882.

Formula

E.g.f.: 2(-2+3e^x-e^(2x))/(2-3e^x).
Showing 1-4 of 4 results.