cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027961 a(n) = Lucas(n+2) - 3.

Original entry on oeis.org

1, 4, 8, 15, 26, 44, 73, 120, 196, 319, 518, 840, 1361, 2204, 3568, 5775, 9346, 15124, 24473, 39600, 64076, 103679, 167758, 271440, 439201, 710644, 1149848, 1860495, 3010346, 4870844, 7881193, 12752040, 20633236, 33385279, 54018518
Offset: 1

Views

Author

Keywords

Comments

Sum of the first n Lucas numbers, that is, A000204(1) to A000204(n). - T. D. Noe, Oct 10 2005

Crossrefs

T(n, n+1), T given by A027960.

Programs

  • GAP
    List([1..40], n-> Lucas(1, -1, n+2)[2] -3 ); # G. C. Greubel, Jun 01 2019
  • Magma
    [Lucas(n+2)-3: n in [1..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2]+3 od: seq(a[n],n=1..40); # Miklos Kristof, Mar 09 2005
    with(combinat): seq(fibonacci(n)+fibonacci(n+2)-3, n=2..40); # Zerinvary Lajos, Jan 31 2008
    g:=(1+z^2)/(1-z-z^2): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-3, n=3..40); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    LucasL[Range[3, 40]] - 3 (* Alonso del Arte, Sep 26 2013 *)
  • PARI
    vector(40, n, fibonacci(n+3) +fibonacci(n+1) -3) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    first(n) = Vec(x*(1+2*x)/((1-x)*(1-x-x^2)) + O(x^(n+1))) \\ Iain Fox, Dec 19 2017
    
  • Sage
    [lucas_number2(n+2, 1, -1) -3 for n in (1..40)] # G. C. Greubel, Jun 01 2019
    

Formula

a(0) = 0, a(1) = 1, a(n) = a(n-1) + a(n-2) + 3.
a(n) = A000204(n+2) - 3 = A000045(2n+4)/A000045(n+2) - 3. - Benoit Cloitre, Jan 05 2003
G.f.: x*(1+2*x)/((1-x)*(1-x-x^2)). Differences of A023537. - Ralf Stephan, Feb 07 2004
a(n) = A101220(3, 1, n). - Ross La Haye, Jan 28 2005
a(n) = F(n) + F(n+2) - 3, n >= 2, where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Jan 31 2008
a(n) = Sum_{k=1..n} ((-1/phi)^k + (phi)^k) where phi = 1/2+1/2*sqrt(5). - Dimitri Papadopoulos, Jan 07 2016
a(n) = 2*a(n-1)-a(n-3) for n>3. - Wesley Ivan Hurt, Jan 07 2016