A028243 a(n) = 3^(n-1) - 2^n + 1 (essentially Stirling numbers of second kind).
0, 0, 2, 12, 50, 180, 602, 1932, 6050, 18660, 57002, 173052, 523250, 1577940, 4750202, 14283372, 42915650, 128878020, 386896202, 1161212892, 3484687250, 10456158900, 31372671002, 94126401612, 282395982050, 847221500580, 2541731610602, 7625329049532
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..2096
- Ovidiu Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91-100.
- J. Brandts and C. Cihangir, Counting triangles that share their vertices with the unit n-cube, in Conference Applications of Mathematics 2013 in honor of the 70th birthday of Karel Segeth. Jan Brandts, Sergey Korotov, et al., eds., Institute of Mathematics AS CR, Prague 2013.
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, Electronics Letters, Volume: 50, Issue: 1, January 2 2014.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- P. Melotti, S. Ramassamy and P. Thévenin, Points and lines configurations for perpendicular bisectors of convex cyclic polygons, arXiv:2003.11006 [math.CO], 2020.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Kevin Ryde, Iterations of the Terdragon Curve, see index "T triple-visited points".
- Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Programs
-
Magma
[3^(n-1) - 2*2^(n-1) + 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
-
Mathematica
Table[2 StirlingS2[n, 3], {n, 24}] (* or *) Table[3^(n - 1) - 2*2^(n - 1) + 1, {n, 24}] (* or *) Rest@ CoefficientList[Series[-2 x^3/(-1 + x)/(-1 + 3 x)/(-1 + 2 x), {x, 0, 24}], x] (* Michael De Vlieger, Sep 24 2016 *)
-
PARI
a(n) = 3^(n-1) - 2*2^(n-1) + 1 \\ G. C. Greubel, Nov 19 2017
-
Sage
[stirling_number2(i,3)*2 for i in range(1,30)] # Zerinvary Lajos, Jun 26 2008
Formula
a(n) = 2*S(n, 3) = 2*A000392(n). - Emeric Deutsch, May 02 2004
G.f.: -2*x^3/(-1+x)/(-1+3*x)/(-1+2*x) = -1/3 - (1/3)/(-1+3*x) + 1/(-1+2*x) - 1/(-1+x). - R. J. Mathar, Nov 22 2007
E.g.f.: (exp(3*x) - 3*exp(2*x) + 3*exp(x) - 1)/3. - Wolfdieter Lang, May 03 2017
E.g.f. with offset 0: exp(x)*(exp(x)-1)^2. - Enrique Navarrete, Aug 13 2021
a(n) = Sum_{k = 1..n-2} binomial(n-1, k) * (2^(n-k-1)-1). - Ocean Wong, Jan 03 2025
Comments