cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028347 a(n) = n^2 - 4.

Original entry on oeis.org

0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597
Offset: 2

Views

Author

Keywords

Comments

Nonnegative X values of solutions to the equation X^3 + 4*X^2 = Y^2. The respective Y values are n*(n^2 - 4). - Mohamed Bouhamida, Nov 06 2007
Discriminants of binary forms x^2 + n*x*y + y^2 (for n > 1). - Artur Jasinski, Apr 28 2008
a(n)*a(n-1) + 4 = (a(n)-n)^2. This is the case d = 4 in the general (n^2-d)*((n-1)^2-d) + d = (n^2-n-d)^2. - Bruno Berselli, Dec 07 2011
Interleaving of A134582 and A078371. - Bruce J. Nicholson, Oct 14 2019

Examples

			G.f. = 5*x^3 + 12*x^4 + 21*x^5 + 32*x^6 + 45*x^7 + 60*x^8 + 77*x^9 + 96*x^10 + ...
		

References

  • Alain Connes, Noncommutative Geometry, Academic Press, 1994, p. 35.

Crossrefs

a(n), n>=3, second column (used for the Balmer series of the hydrogen atom) of triangle A120070.

Programs

Formula

Except for initial term, denominators of energies of hydrogen lines.
a(n+2) = n*(n+4). G.f.: x^3*(5-3*x)/(1-x)^3. - Barry E. Williams, Jun 16 2000, R. J. Mathar, Aug 06 2009
a(n) = 2*n + a(n-1) - 1. - Vincenzo Librandi, Aug 02 2010
Sum_{n >= 3} 1/a(n) = 25/48 = 0.52083333... = 100*A021196. - R. J. Mathar, Mar 22 2011
a(n) = x, the solution of k = (sqrt(x)+n)/2 and k + (1/k) = n (also valid for a(0) = -4 and a(1) = -3). - Charles L. Hohn, Apr 16 2011
E.g.f.: (x^2 + x - 4)*exp(x). - G. C. Greubel, Jul 17 2017
Sum_{n>=3} (-1)^(n+1)/a(n) = 7/48. - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=3} (1 - 1/a(n)) = 6*sin(sqrt(5)*Pi)/(sqrt(5)*Pi).
Product_{n>=3} (1 + 1/a(n)) = -4*sqrt(3)*sin(sqrt(3)*Pi)/Pi. (End)