cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028361 Number of totally isotropic spaces of index n in orthogonal geometry of dimension 2n.

Original entry on oeis.org

1, 2, 6, 30, 270, 4590, 151470, 9845550, 1270075950, 326409519150, 167448083323950, 171634285407048750, 351678650799042888750, 1440827432323678715208750, 11804699153027899713705288750, 193419995622362136809061156168750, 6338179836549184861096125026493768750
Offset: 0

Views

Author

Keywords

Comments

These numbers appear in first column of A155103. - Mats Granvik, Jan 20 2009
Equals row sums of unsigned triangle A158474. - Gary W. Adamson, Mar 20 2009
a(n) = (n+2) terms in the sequence (1, 1, 2, 4, 8, 16, ...) dot (n+2) terms in the sequence (1, 1, 2, 6, 30, 270, ...). Example: a(4) = 4590 = (1, 2, 4, 8, 16) dot (1, 1, 2, 6, 30, 270) = (1 + 1 + 4 + 24 + 240 + 4320). - Gary W. Adamson, Aug 02 2010
a(n) is the right-hand side of the mass formula used to classify Type II Self Dual Binary Linear Codes of length 2(n+1). a(n) is the number of distinct Type II Self Dual Binary Linear codes of length 2(n+1) when 2(n+1) = 0 MOD 8. It is important to note that Type II codes are only possible when the length is a multiple of 8. In short, this sequence only applies to Type II codes when 2(n+1) = 0 MOD 8, else the right hand side of the mass formula is zero. - Nathan J. Russell, Mar 04 2016
This is almost certainly the sequence of number of Carlyle circles needed for the construction of regular polygons using straightedge and compass mentioned on page 107 of DeTemple (1991). - N. J. A. Sloane, Aug 05 2021
a(n) is also the number of Sp(oo, F2)-orbits of V^n, where V is the countable-dimensional symplectic vector space over the two-element field. - Jingjie Yang, Jul 30 2025

References

  • W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Page 366. - Nathan J. Russell, Mar 04 2016

Crossrefs

Cf. A006125, A028362, A155103, A158474, A323716 (product of 3^i+1).

Programs

  • Magma
    [1] cat [ (&*[1+2^j: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Jun 06 2020
    
  • Maple
    seq( mul((1+2^j), j=0..n-1), n = 0..20); # G. C. Greubel, Jun 06 2020
  • Mathematica
    Table[QPochhammer[-1, 2, n], {n, 0, 15}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
    Table[Product[2^i + 1, {i, 0, n/2 - 2}], {n, 2, 32, 2}] (* Nathan J. Russell, Mar 04 2016 *)
    Table[Product[2^i + 1, {i, 0, n - 1}], {n, 0, 15}] (* Nathan J. Russell, Mar 04 2016 *)
    FoldList[Times,1,2^Range[0,20]+1] (* Harvey P. Dale, Apr 11 2016 *)
  • PARI
    {a(n) = prod(k=0, n-1, 2^k + 1)};
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2^(m*(m-1)/2)*x^m/prod(k=0,m,1-2^k*x+x*O(x^n))),n)} /* Paul D. Hanna, May 02 2012 */
    
  • Python
    for n in range(2,50,2):
      product = 1
      for i in range(0,n//2-2 + 1):
        product *= (2**i+1)
      print(product)
    # Nathan J. Russell, Mar 01 2016
    
  • Sage
    [product( 1+2^j for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Jun 06 2020

Formula

a(n) = Product_{i=0..n-1} ( 2^i + 1 ).
Asymptotic to C*2^(n*(n-1)/2) where C = A081845 = 4.76846205806274344829979857... = Product_{k>=0} (1 + 1/2^k). - Benoit Cloitre, Apr 09 2003
It appears that a(n) = 2^((1/2)*(n - 1)*n) * Product_{k>=0} (1 + 1/(2^k)) / Product_{k>=0} (1 + 1/(2^(n + k))). - Peter Moxey (pmoxey(AT)live.com), Mar 21 2010
G.f.: Sum_{n>=0} 2^(n*(n-1)/2) * x^n / Product_{k=0..n} (1 - 2^k*x). - Paul D. Hanna, May 02 2012
a(n) = (a(n-2)^3 + a(n-1) * a(n-3) * (a(n-1) - 2 * a(n-2))) * a(n-1) / (a(n-2)^2 * (a(n-2) - a(n-3))) if n>2. - Michael Somos, Aug 21 2012
0 = a(n)*(+a(n+1) + a(n+2)) + a(n+1)*(-2*a(n+1)) for all n>=0. - Michael Somos, Oct 10 2014
Sum_{k=0..n} 2^k/a(k) = 3-2/a(n) and Sum_{k=0..n} 4^k/a(k) = 9-(4*(1+2^n))/a(n) for n >= 0. - Werner Schulte, Dec 25 2016
G.f. A(x) satisfies: A(x) = (1 + x * A(2*x)) / (1 - x). - Ilya Gutkovskiy, Jun 06 2020
a(n) = Sum_{k=0..n} q_binomial(n, k, q=2) * 2^(k*(k-1)/2). - Jingjie Yang, Jul 30 2025