cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A374854 a(n) = (1/30)*A028361(n) for n>=3.

Original entry on oeis.org

1, 9, 153, 5049, 328185, 42335865, 10880317305, 5581602777465, 5721142846901625, 11722621693301429625, 48027581077455957173625, 393489971767596657123509625, 6447333187412071226968705205625, 211272661218306162036537500883125625
Offset: 3

Views

Author

Clark Kimberling, Aug 05 2024

Keywords

Comments

a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

Crossrefs

Programs

  • Mathematica
    s[n_] := 1; t[n_] := 2^n;
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
    (1/30) Table[u[n], {n, 2, 20}]

Formula

a(n) = (1/30)(s**t)(n), where s = A000012 = (1,1,1,...), t = A000079 = (1,2,4,8,16,...), and ** denotes obverse convolution, as in A374848.
a(n) = A060202(n+1)/180. - Hugo Pfoertner, Aug 07 2024

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A028362 Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.

Original entry on oeis.org

1, 3, 15, 135, 2295, 75735, 4922775, 635037975, 163204759575, 83724041661975, 85817142703524375, 175839325399521444375, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375
Offset: 1

Views

Author

Keywords

Comments

These numbers appear in the second column of A155103. - Mats Granvik, Jan 20 2009
a(n) = n terms in the sequence (1, 2, 4, 8, 16, ...) dot n terms in the sequence (1, 1, 3, 15, 135). Example: a(5) = 2295 = (1, 2, 4, 8, 16) dot (1, 1, 3, 15, 135) = (1 + 2 + 12 + 120 + 2160). - Gary W. Adamson, Aug 02 2010

Examples

			G.f. = x + 3*x^2 + 15*x^3 + 135*x^4 + 2295*x^5 + 75735*x^6 + 4922775*x^7 + ...
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 630.

Crossrefs

Cf. A155103. - Mats Granvik, Jan 20 2009
Cf. A005329, A006088. - Paul D. Hanna, Sep 16 2009

Programs

  • Magma
    [1] cat [&*[ 2^k+1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    seq(mul(1 + 2^j, j = 1..n-1), n = 1..20); # G. C. Greubel, Jun 06 2020
  • Mathematica
    Table[Product[2^i+1,{i,n-1}],{n,15}] (* or *) FoldList[Times,1, 2^Range[15]+1] (* Harvey P. Dale, Nov 21 2011 *)
    Table[QPochhammer[-2, 2, n - 1], {n, 15}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2^(m*(m-1)/2)*x^m/prod(k=0,m-1,1-2^k*x+x*O(x^n))),n)} \\ Paul D. Hanna, Sep 16 2009
    
  • PARI
    {a(n) = if( n<1, 0 , prod(k=1, n-1, 2^k + 1))}; /* Michael Somos, Jan 28 2018 */
    
  • PARI
    {a(n) = sum(k=0, n-1, 2^(k*(k+1)/2) * prod(j=1, k, (2^(n-j) - 1) / (2^j - 1)))}; /* Michael Somos, Jan 28 2018 */
    
  • Python
    for n in range(2,40,2):
      product = 1
      for i in range(1,n//2-1 + 1):
        product *= (2**i+1)
      print(product)
    # Nathan J. Russell, Mar 01 2016
    
  • Python
    from math import prod
    def A028362(n): return prod((1<Chai Wah Wu, Jun 20 2022
    
  • Sage
    from ore_algebra import *
    R. = QQ['x']
    A. = OreAlgebra(R, 'Qx', q=2)
    print((Qx - x - 1).to_list([0,1], 10))  # Ralf Stephan, Apr 24 2014
    
  • Sage
    from sage.combinat.q_analogues import q_pochhammer
    [q_pochhammer(n-1,-2,2) for n in (1..20)] # G. C. Greubel, Jun 06 2020
    
  • Scheme
    ;; With memoization-macro definec.
    (define (A028362 n) (A028362off0 (- n 1)))
    (definec (A028362off0 n) (if (zero? n) 1 (+ (A028362off0 (- n 1)) (* (expt 2 n) (A028362off0 (- n 1))))))
    ;; Antti Karttunen, Apr 15 2017

Formula

a(n) = Product_{i=1..n-1} (2^i+1).
Letting a(0)=1, we have a(n) = Sum_{k=0..n-1} 2^k*a(k) for n>0. a(n) is asymptotic to c*sqrt(2)^(n^2-n) where c=2.384231029031371724149899288.... = A079555 = Product_{k>=1} (1 + 1/2^k). - Benoit Cloitre, Jan 25 2003
G.f.: Sum_{n>=1} 2^(n*(n-1)/2) * x^n/(Product_{k=0..n-1} (1-2^k*x)). - Paul D. Hanna, Sep 16 2009
a(n) = 2^(binomial(n,2) - 1)*(-1; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
From Antti Karttunen, Apr 15 2017: (Start)
a(n) = A048675(A285101(n-1)).
a(n) = b(n-1), where b(0) = 1, and for n > 0, b(n) = b(n-1) + (2^n)*b(n-1).
a(n) = Sum_{i=1..A000124(n-1)} A053632(n-1,i-1)*(2^(i-1)) [where the indexing of both rows and columns of irregular table A053632(row,col) is considered to start from zero].
(End)
G.f. A(x) satisfies: A(x) = x * (1 + A(2*x)) / (1 - x). - Ilya Gutkovskiy, Jun 06 2020
Conjectural o.g.f. as a continued fraction of Stieltjes type (S-fraction):
1/(1 - 3*x/(1 - 2*x/(1 - 10*x/(1 - 12*x/(1 - 36*x/(1 - 56*x/(1 - 136*x/(1 - 240*x/(1 - ... - 2^(n-1)*(2^n + 1)*x/(1 - 2^n*(2^n - 1)*x/(1 - ... ))))))))))). - Peter Bala, Sep 27 2023

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A081845 Decimal expansion of Product_{k>=0} (1 + 1/2^k).

Original entry on oeis.org

4, 7, 6, 8, 4, 6, 2, 0, 5, 8, 0, 6, 2, 7, 4, 3, 4, 4, 8, 2, 9, 9, 7, 9, 8, 5, 7, 7, 3, 5, 6, 7, 9, 4, 4, 7, 7, 5, 4, 3, 2, 3, 9, 0, 3, 3, 0, 1, 6, 8, 6, 6, 9, 1, 5, 3, 8, 4, 2, 0, 3, 0, 1, 5, 9, 7, 8, 3, 6, 2, 5, 8, 6, 0, 7, 2, 0, 7, 4, 5, 1, 0, 3, 7, 3, 0, 7, 0, 4, 2, 0, 7, 3, 1, 3, 6, 1, 0, 4, 0, 0, 0, 5, 3, 7
Offset: 1

Author

Benoit Cloitre, Apr 09 2003

Keywords

Comments

Twice the product in A079555.

Examples

			4.76846205806274344829979857....
		

Programs

  • Mathematica
    digits = 105; NProduct[1 + 1/2^k, {k, 0, Infinity}, WorkingPrecision -> digits+5, NProductFactors -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013 *)
    N[QPochhammer[-1, 1/2], 100] (* Vaclav Kotesovec, Dec 13 2015 *)
    2*N[QPochhammer[-1/2, 1/2], 200] (* G. C. Greubel, Dec 20 2015 *)
  • PARI
    prodinf(k=0,1/2^k,1) \\ Hugo Pfoertner, Feb 21 2020

Formula

lim sup Product_{k=0..floor(log_2(n))} (1 + 1/floor(n/2^k)) for n-->oo. - Hieronymus Fischer, Aug 20 2007
lim sup A132369(n)/A098844(n) for n-->oo. - Hieronymus Fischer, Aug 20 2007
lim sup A132269(n)/n^((1+log_2(n))/2) for n-->oo. - Hieronymus Fischer, Aug 20 2007
lim sup A132270(n)/n^((log_2(n)-1)/2) for n-->oo. - Hieronymus Fischer, Aug 20 2007
2*exp(Sum_{n>0} 2^(-n)*Sum_{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*2^n)). - Hieronymus Fischer, Aug 20 2007
lim sup A132269(n+1)/A132269(n) = 4.76846205806274344... for n-->oo. - Hieronymus Fischer, Aug 20 2007
Sum_{k>=1} (-1)^(k+1) * 2^k / (k*(2^k-1)) = log(A081845) = 1.562023833218500307570359922772014353168080202860122... . - Vaclav Kotesovec, Dec 13 2015
Equals 2*(-1/2; 1/2){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
Equals 1 + Sum_{n>=1} 2^n/((2-1)*(2^2-1)*...*(2^n-1)). - Robert FERREOL, Feb 21 2020
From Peter Bala, Jan 18 2021: (Start)
Constant C = 3*Sum_{n >= 0} (1/2)^n/Product_{k = 1..n} (2^k - 1).
Faster converging series:
C = (2*3*5)/(2^3)*Sum_{n >= 0} (1/4)^n/Product_{k = 1..n} (2^k - 1),
C = (2*3*5*9)/(2^6)*Sum_{n >= 0} (1/8)^n/Product_{k = 1..n} (2^k - 1),
C = (2*3*5*9*17)/(2^10)*Sum_{n >= 0} (1/16)^n/Product_{k = 1..n} (2^k - 1), and so on. The sequence [2,3,5,9,17,...] is A000051. (End)
From Amiram Eldar, Mar 20 2022: (Start)
Equals sqrt(2) * exp(log(2)/24 + Pi^2/(12*log(2))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(2))) (McIntosh, 1995).
Equals 1/A083864. (End)
Equals lim_{n->oo} A020696(2^n)/A006125(n+1) (Sándor, 2021). - Amiram Eldar, Jun 29 2022

A135950 Matrix inverse of triangle A022166.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -8, 14, -7, 1, 64, -120, 70, -15, 1, -1024, 1984, -1240, 310, -31, 1, 32768, -64512, 41664, -11160, 1302, -63, 1, -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1, 268435456, -534773760, 353730560, -99486720, 12850368, -777240, 21590, -255, 1
Offset: 0

Author

Paul D. Hanna, Dec 08 2007

Keywords

Comments

A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2.
The coefficient [x^k] of Product_{i=1..n} (x-2^(i-1)). - Roger L. Bagula, Mar 20 2009
Triangle T(n,k), 0 <= k <= n, read by rows given by (-1, 1-q, -q^2, q-q^3, -q^4, q^2-q^5, -q^6, q^3-q^7, -q^8, ...) DELTA (1, 0, q, 0, q^2, 0, q^3, 0, q^4, 0, ...) (for q = 2) = (-1, -1, -4, -6, -16, -28, -64, -120, -256, ...) DELTA (1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2013
Reversed rows of triangle A158474. - Werner Schulte, Apr 06 2019
T(n,k) = Sum mu(0,U) where the sum is taken over the subspaces U of GF(2)^n having dimension n-k and mu is the Moebius function of the poset of all subspaces of GF(2)^n. - Geoffrey Critzer, Jun 02 2024

Examples

			Triangle begins:
         1;
        -1,       1;
         2,      -3,        1;
        -8,      14,       -7,      1;
        64,    -120,       70,    -15,      1;
     -1024,    1984,    -1240,    310,    -31,    1;
     32768,  -64512,    41664, -11160,   1302,  -63,    1;
  -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1; ...
		

Crossrefs

Cf. A022166, A006125, A028361, A127850, A135951 (central terms), A158474.

Programs

  • Mathematica
    max = 9; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    p[x_, n_, q_] := (-1)^n*q^Binomial[n, 2]*QPochhammer[x, 1/q, n];
    Table[CoefficientList[Series[p[x, n, 2], {x, 0, n}], x], {n, 0, 10}]// Flatten (* G. C. Greubel, Apr 15 2019 *)
  • PARI
    T(n,k)=local(q=2,A=matrix(n+1,n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[n+1,k+1]

Formula

Unsigned column 0 equals A006125(n) = 2^(n*(n-1)/2).
Unsigned column 1 equals A127850(n) = (2^n-1)*2^(n*(n-1)/2)/2^(n-1).
Row sums equal 0^n.
Unsigned row sums equal A028361(n) = Product_{k=0..n} (1+2^k).
T(n,k) = (-1)^(n-k) * A022166(n,k) * 2^binomial(n-k,2) for 0 <= k <= n. - Werner Schulte, Apr 06 2019 [corrected by Werner Schulte, Dec 27 2021]
Sum_{n>=0} Sum_{k=0..n} T(n,k)y^k*x^n/A005329(n) = e(y*x)/e(x) where e(x) = Sum_{n>=0} x^n/A005329(n). - Geoffrey Critzer, Jun 02 2024

A158474 Triangle read by rows generated from (x-1)*(x-2)*(x-4)*...

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -7, 14, -8, 1, -15, 70, -120, 64, 1, -31, 310, -1240, 1984, -1024, 1, -63, 1302, -11160, 41664, -64512, 32768, 1, -127, 5334, -94488, 755904, -2731008, 4161536, -2097152, 1, -255, 21590, -777240, 12850368, -99486720, 353730560
Offset: 0

Author

Gary W. Adamson, Mar 20 2009

Keywords

Comments

Row sum of the unsigned triangle = A028361: (1, 2, 6, 30, 270, 4590, ...).
Right border of the unsigned triangle = A006125: (1, 1, 2, 8, 64, 1024, ...).
From Philippe Deléham, Mar 20 2009: (Start)
Unsigned triangle: A077957(n) DELTA A007179(n+1) = [1,0,2,0,4,0,8,0,16,0,32,0,...]DELTA[1,1,4,6,16,28,64,120,256,496,...], where DELTA is the operator defined in A084938.
Signed triangle: [1,0,2,0,4,0,8,0,16,0,...]DELTA[-1,-1,-4,-6,-16,-28,-64,...]. (End)

Examples

			First few rows of the triangle =
1;
1,  -1;
1,  -3,     2;
1,  -7,    14,     -8;
1, -15,    70,   -120,       64;
1, -31,   310,  -1240,     1984,    -1024;
1, -63,  1302, -11160,    41664,   -64512,     32768;
1,-127,  5334, -94488,   755904, -2731008,   4161536,  -2097152;
1,-255, 21590,-777240, 12850368,-99486720, 353730560,-534773760, 268435456;
...
Example: row 3 = x^3 - 7x^2 + 14x - 8 = (x-1)*(x-2)*(x-4).
		

Crossrefs

Cf. A157963, A135950. - R. J. Mathar, Mar 20 2009

Programs

  • Maple
    A158474 := proc(n,k) mul(x-2^j,j=0..n-1) ; expand(%); coeftayl(%,x=0,n-k) ; end proc: # R. J. Mathar, Aug 27 2011
  • Mathematica
    {{1}}~Join~Table[Reverse@ CoefficientList[Fold[#1 (x - #2) &, 1, 2^Range[0, n]], x], {n, 0, 7}] // Flatten (* Michael De Vlieger, Dec 22 2016 *)

Formula

T(n,k) = coefficient [x^(n-k)] of (x-1)*(x-2)*(x-4)*...*(x-2^(n-1)).
T(n,k) = (-1)^k*(Sum_{j=0..k} T(k,j)*2^((k-j)*n))/(Product_{i=1..k} (2^i-1)) for n >= 0 and k > 0, i.e., e.g.f. of col k > 0 is: (-1)^k*(Sum_{j=0..k} T(k,j)* exp(2^(k-j)*t))/(Product_{i=1..k} (2^i-1)). - Werner Schulte, Dec 18 2016
T(n,k)/T(k,k) = A022166(n,k) for 0 <= k <= n. - Werner Schulte, Dec 21 2016

A155103 Triangle read by rows: Matrix inverse of A155102.

Original entry on oeis.org

1, 2, 1, 0, 0, 1, 6, 3, 0, 1, 0, 0, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 30, 15, 0, 5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 28, 0, 0, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0
Offset: 1

Author

Mats Granvik, Jan 20 2009

Keywords

Comments

A028361 appears in the first column at A036987 positions. A028362 appears in the second column, A155105 in the third and A155104 in the fourth. A000384 appears as the third ray from zero and A100147 as the fourth.

Examples

			Table begins:
1,
2,1,
0,0,1,
6,3,0,1,
0,0,0,0,1,
0,0,4,0,0,1,
0,0,0,0,0,0,1,
30,15,0,5,0,0,0,1,
		

Programs

  • Mathematica
    m = 14; t = Inverse[ Table[ Which[n == k, 1, n == 2*k, -k - 1, True, 0], {n, 1, m}, {k, 1, m}]]; Flatten[ Table[t[[n, k]], {n, 1, m}, {k, 1, n}]] (* Jean-François Alcover, Jul 19 2012 *)

A269455 Number of Type I (singly-even) self-dual binary codes of length 2n.

Original entry on oeis.org

1, 3, 15, 105, 2295, 75735, 4922775, 625192425, 163204759575, 83724041661975, 85817142703524375, 175667691114114395625, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375, 3168896498278970068411253452090715625, 207692645973961964120828372930661061284375, 27222898185745116523209337325140537285726884375, 7136346644902153570976711733098966146766874104484375, 3741493773415815389266667264411257664189964123617799515625
Offset: 1

Author

Nathan J. Russell, Feb 27 2016

Keywords

Comments

A self dual binary linear code is either Type I (singly even) or Type II (doubly even). A self dual binary linear code can only be Type II if the length of the code (2n) is a multiple of 8. The total number self dual binary linear codes (including equivalent codes) is equal to the number of Type I self dual binary linear codes (including equivalent codes) when the length (2n) is not a multiple of 8. If the length is a multiple of 8 ( 2n =0 mod 8 ) then the total number of Type I codes is the number of type II codes subtracted from the total number of self dual codes of length 2n.

References

  • W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, 2003, Page 366.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.

Crossrefs

Programs

  • Mathematica
    Table[
    If[Mod[2 n, 8] == 0,
      Product[2^i + 1, {i, 1, n - 1}] - Product[2^i + 1, {i, 0, n - 2}] ,
      Product[2^i + 1, {i, 1, n - 1}]],
    {n, 1, 10}] (* Nathan J. Russell, Mar 01 2016 *)
  • PARI
    a(n) = if (2*n%8==0, prod(i=1, n-1, 2^i+1)-prod(i=0, n-2, 2^i+1), prod(i=1, n-1, 2^i+1))
    vector(20, n, a(n)) \\ Colin Barker, Feb 28 2016
  • Python
    for n in range(1,10):
        product1 = 1
        for i in range(1,n-1 + 1):
            product1 *= (2**i+1)
        if (2*n)%8 == 0:
            product2 = 1
            for i in range(n-2 + 1):
                product2 *= (2**i+1)
            print(product1 - product2)
        else:
            print(product1)
    

Formula

From Nathan J. Russell, Mar 01 2016: (Start)
If 2n = 0 MOD 8 then a(n) = prod_(2^i+1, i=1,...,n-1) - prod_(2^i+1, i=0,...,n-2);
If 2n != 0 MOD 8 then a(n) = prod_(2^i+1, i=1,...,n-1).
If 2n = 0 MOD 8 then a(n) = A028362(n) - A028363( n/8);
If 2n != 0 MOD 8 then a(n) = A028362(n).
(End)

Extensions

a(20) corrected by Andrew Howroyd, Feb 22 2018

A323716 a(n) = Product_{k=0..n} (3^k + 1).

Original entry on oeis.org

2, 8, 80, 2240, 183680, 44817920, 32717081600, 71584974540800, 469740602936729600, 9246374028206585446400, 545998386365598870609920000, 96722522147893108730806108160000, 51402410615320609490117059732766720000
Offset: 0

Author

Vaclav Kotesovec, Jan 25 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&*[3^j+1: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 30 2023
    
  • Mathematica
    Table[Product[3^k+1, {k, 0, n}], {n, 0, 12}]
    Table[QPochhammer[-1, 3, n+1], {n, 0, 12}]
  • PARI
    a(n) = prod(k=0, n, 3^k+1); \\ Michel Marcus, Jan 25 2019
    
  • SageMath
    [product(3^j+1 for j in range(n+1)) for n in range(21)] # G. C. Greubel, Aug 30 2023

Formula

a(n) ~ c * 3^(n*(n+1)/2), where c = A132323 = QPochhammer[-1, 1/3] = 3.12986803713402307587769821345767...
Showing 1-10 of 20 results. Next