A028560 a(n) = n*(n + 6).
0, 7, 16, 27, 40, 55, 72, 91, 112, 135, 160, 187, 216, 247, 280, 315, 352, 391, 432, 475, 520, 567, 616, 667, 720, 775, 832, 891, 952, 1015, 1080, 1147, 1216, 1287, 1360, 1435, 1512, 1591, 1672, 1755, 1840, 1927, 2016, 2107, 2200, 2295, 2392
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Patrick De Geest, Palindromic Quasipronics of the form n(n+x).
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
- Leo Tavares, Illustration: Diamond Pairs.
- Wikipedia, Hydrogen spectral series.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a028560 n = n * (n + 6) -- Reinhard Zumkeller, Apr 07 2013
-
Maple
A028560:=n->n*(n + 6); seq(A028560(n), n=0..100); # Wesley Ivan Hurt, Mar 27 2014
-
Mathematica
Table[n(n + 6), {n, 0, 65}]
-
PARI
a(n)=n*(n+6) \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = (n+3)^2 - 3^2 = n*(n+6).
G.f.: x*(7-5*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 5. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 49/120 = 0.4083333... - R. J. Mathar, Mar 22 2011
a(n) = A028884(n) - 1. - Reinhard Zumkeller, Apr 07 2013
E.g.f.: x*(x+7)*exp(x). - G. C. Greubel, Aug 19 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 37/360. - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -4*sqrt(10)*sin(sqrt(10)*Pi)/(3*Pi).
Product_{n>=1} (1 + 1/a(n)) = 45*sqrt(2)*sin(2*sqrt(2)*Pi)/(7*Pi). (End)
Extensions
Edited by Robert G. Wilson v, Feb 06 2002
Comments