cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A028840 Numbers k such that sum of digits of k is a Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 10, 11, 12, 14, 17, 20, 21, 23, 26, 30, 32, 35, 41, 44, 49, 50, 53, 58, 62, 67, 71, 76, 80, 85, 94, 100, 101, 102, 104, 107, 110, 111, 113, 116, 120, 122, 125, 131, 134, 139, 140, 143, 148, 152, 157, 161, 166, 170, 175, 184, 193, 200, 201, 203, 206
Offset: 1

Views

Author

Keywords

Comments

The subsequence of primes begins: 2, 3, 5, 11, 17, 23, 41, 53, 67, 71, 101, 107, 113, 131, 139, 157, 193, 229, 233, 251 ... - Dario Piazzalunga, Jan 03 2013
The subsequence of Fibonacci numbers begins: 0, 1, 2, 3, 5, 8, 21, 233, ... (no more up to 100000). - Dario Piazzalunga, Jan 03 2013

Crossrefs

Programs

  • Maple
    isA000045 := proc(n)
        local i,f;
        for i from 0 do
            f := combinat[fibonacci](i) ;
            if f = n then
                return true;
            elif f > n then
                return false;
            end if;
        end do:
    end proc:
    isA028840 := proc(n)
        isA000045(A007953(n)) ;
    end proc:
    for n from 0 to 1000 do
        if isA028840(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Apr 17 2013
    # second Maple program:
    q:= proc(n) option remember; (t->
          issqr(t+4) or issqr(t-4))(5*n^2)
        end:
    a:= proc(n) option remember; local k; for k from
         `if`(n=1, 0, 1+a(n-1)) while not q(
          add(i, i=convert(k, base, 10))) do od; k
        end:
    seq(a(n), n=1..66);  # Alois P. Heinz, Jan 28 2020
  • Mathematica
    f = Union[Fibonacci[Range[0, 8]]]; t = {}; n = 0; While[c = Total[IntegerDigits[n]]; c < f[[-1]], If[MemberQ[f, c], AppendTo[t, n]]; n++]; t (* T. D. Noe, Jan 03 2013 *)

Extensions

More terms from Erich Friedman
0 inserted by Dario Piazzalunga, Jan 03 2013

A028891 Iterated product of digits of n is a positive Fibonacci number.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 13, 15, 18, 21, 24, 26, 29, 31, 34, 35, 36, 37, 38, 42, 43, 46, 49, 51, 53, 57, 62, 63, 64, 66, 67, 73, 75, 76, 77, 79, 81, 83, 88, 92, 94, 97, 99, 111, 112, 113, 115, 118, 121, 124, 126, 129, 131, 134, 135, 136, 137, 138, 142, 143, 146, 149, 151
Offset: 0

Views

Author

Keywords

Examples

			149 -> 1*4*9 = 36 -> 3*6 = 18 -> 1*8 = 8 is a Fibonacci number.
		

Crossrefs

Programs

  • Mathematica
    ipdfQ[n_]:=Module[{pd=NestWhile[Times@@IntegerDigits[#]&,n, #>9&]}, MemberQ[ {1,2,3,5,8}, pd]]; Select[Range[200],ipdfQ] (* Harvey P. Dale, Mar 10 2016 *)

Extensions

Extended (and corrected) by Patrick De Geest, Jun 15 1999

A117725 Zeroless numbers for which the sum of the digits and the product of the digits are both Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 21, 111, 113, 131, 311, 1112, 1115, 1121, 1124, 1142, 1151, 1211, 1214, 1241, 1412, 1421, 1511, 2111, 2114, 2141, 2411, 4112, 4121, 4211, 5111, 11111, 11137, 11173, 11222, 11289, 11298, 11317, 11371, 11713, 11731, 11829, 11892, 11928
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 13 2006

Keywords

Examples

			18192 is a term because the sum of its digits is 1+8+1+9+2 = 21, the product of its digits is 1*8*1*9*2 = 144 and both 21 and 144 are Fibonacci numbers.
		

Crossrefs

Subsequence of A028840, A028890 and of A052382.

Programs

  • Mathematica
    isFibonacci[x_]:=MemberQ[Array[Fibonacci,2x],x];DeleteCases[ParallelTable[If[And[isFibonacci[Times@@IntegerDigits[n]],isFibonacci[Total[IntegerDigits[n]]]],n,a],{n,1,15000}],a] (* J.W.L. (Jan) Eerland, Jan 03 2024 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8); \\ A000045
    isok(k) = my(d=digits(k)); vecmin(d) && isfib(vecsum(d)) && isfib(vecprod(d)); \\ Michel Marcus, Jan 03 2024
    
  • PARI
    \\ See PARI program in links

Extensions

a(45) from J.W.L. (Jan) Eerland, Jan 03 2024
Name clarified by Michel Marcus, Jan 03 2024
Showing 1-3 of 3 results.