A029651 Central elements of the (1,2)-Pascal triangle A029635.
1, 3, 9, 30, 105, 378, 1386, 5148, 19305, 72930, 277134, 1058148, 4056234, 15600900, 60174900, 232676280, 901620585, 3500409330, 13612702950, 53017895700, 206769793230, 807386811660, 3156148445580, 12350146091400, 48371405524650
Offset: 0
References
- V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- C. Bean, M. Tannock and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015.
- Milan Janjic, Two Enumerative Functions
- Mark C. Wilson, Asymptotics for generalized Riordan arrays, International Conference on Analysis of Algorithms DMTCS proc. AD. Vol. 323. 2005. (However, the asymptotics given there on p. 328 for a(n) give different results for me. - _Ralf Stephan_, Dec 28 2013)
Programs
-
Maple
a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n))-0^n/2; seq(simplify(a(n)), n=0..24); # Peter Luschny, Dec 16 2015
-
Mathematica
Join[{1},Table[3*Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Aug 11 2015 *)
-
PARI
concat([1], for(n=1, 50, print1(3*binomial(2*n-1,n), ", "))) \\ G. C. Greubel, Jan 23 2017
Formula
a(n) = 3 * binomial(2n-1, n) (n>0). - Len Smiley, Nov 03 2001
a(n) = 3*A001700(n-1), (n>=1).
G.f.: (1+xC(x))/(1-2xC(x)), C(x) the g.f. of A000108. - Paul Barry, Dec 17 2004
a(n) = A003409(n), n>0. - R. J. Mathar, Oct 23 2008
a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n))-0^n/2. - Peter Luschny, Dec 16 2015
a(n) ~ (3/2)*4^n*(1-(1/8)/n+(1/128)/n^2+(5/1024)/n^3-(21/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = 2^(1-n)*Sum_{k=0..n} binomial(k+n,k)*binomial(2*n-1,n-k), n>0, a(0)=1. - Vladimir Kruchinin, Nov 23 2016
E.g.f.: (3*exp(2*x)*BesselI(0,2*x) - 1)/2. - Ilya Gutkovskiy, Nov 23 2016
a(n) = [x^n] C(-x)^(-3*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Oct 16 2024
Extensions
More terms from David W. Wilson
Comments