cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A029797 Numbers k such that k^2 and k^3 have the same set of digits.

Original entry on oeis.org

0, 1, 10, 100, 146, 1000, 1203, 1460, 7652, 8077, 8751, 8965, 10000, 10406, 11914, 12030, 12057, 12586, 12768, 12961, 13055, 14202, 14600, 14625, 16221, 19350, 20450, 21539, 22040, 22175, 23682, 24071, 25089, 25201, 25708, 26653, 26981
Offset: 1

Views

Author

Keywords

Comments

Conjecture: there exists some m and N for which a(n) = m + n for all n >= N. [Charles R Greathouse IV, Jun 28 2011]
This conjecture is false. If the conjecture is true then for some N we would have k is in the sequence if k >= n. But 10^e + 1 (A062397) is not in the sequence for any integer e >= 0. - David A. Corneth, Nov 13 2023

Examples

			146 is in the sequence as 146^2 = 21316 has digits {1, 2, 3, 6} and 146^3 = 3112136 has digits {1, 2, 3, 6} as well. - _David A. Corneth_, Nov 13 2023
		

Crossrefs

Cf. A011557 (a subsequence).

Programs

A029801 Squares k such that sqrt(k), k and k^(3/2) all have the same digits.

Original entry on oeis.org

0, 1, 100, 10000, 1000000, 100000000, 10000000000, 1000000000000, 17245415617600, 96929164158121, 100000000000000, 105134200729009, 107276273345476, 107843987961616, 120392793693225, 157426531462729
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A029800(n)^2. - Michel Marcus, Nov 13 2023

A029802 Cubes k such that k^(1/3), k^(2/3) and k all have the same digits.

Original entry on oeis.org

0, 1, 1000, 1000000, 1000000000, 1000000000000, 1000000000000000, 1000000000000000000, 71616072160144576000, 954292919648546514581, 1000000000000000000000, 1077993211772291594473
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A029800(n)^3. - Michel Marcus, Nov 13 2023

A168070 Numbers n with property that n, n^2, n^3, and n^4 have the same set of digits (not counting repetitions).

Original entry on oeis.org

0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 71624305, 100000000, 103849576, 105823694, 106597243, 108326947, 120463578, 124093657, 126509743, 129306745, 129738560, 139784256, 140786329, 147863502, 148936025, 150973624
Offset: 1

Views

Author

Zak Seidov, Nov 18 2009

Keywords

Comments

If n is here then also 10*n is. But not vice versa: if the term n is multiple of 10 then not necessarily n/10 is the term; e.g., 129738560, 172836950, 175438290 are terms but 12973856, 17283695, 17543829 not.

Crossrefs

Cf. A029800.

Programs

  • PARI
    isok(n) = s1 = Set(digits(n)); (s1 == Set(digits(n^2))) && (s1 == Set(digits(n^3))) && (s1 == Set(digits(n^4))); \\ Michel Marcus, Oct 15 2013

A030093 Primes p such that p, p^2 and p^3 all have the same set of digits.

Original entry on oeis.org

10253497, 74058619, 74563219, 93689027, 102438967, 103259867, 103271569, 104369581, 106725389, 106948327, 107086249, 125384957, 125987473, 127035269, 130256479, 130284769, 136052897, 146970823, 147502963
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A029800 and A000040.

Programs

  • Mathematica
    sdQ[n_]:=Module[{c=Union/@(IntegerDigits/@{n,n^2,n^3})}, c[[1]] == c[[2]] == c[[3]]]; Select[Prime[Range[8400000]],sdQ] (* Harvey P. Dale, Jan 10 2012 *)

Extensions

Offset changed by Andrew Howroyd, Aug 11 2024
Showing 1-5 of 5 results.