A030078 Cubes of primes.
8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1
Examples
a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
References
- Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Xavier Gourdon and Pascal Sebah, Some Constants from Number theory.
- Eric Weisstein's World of Mathematics, Prime Power.
- Wikipedia, p-group, Classification.
- Index to sequences related to prime signature
Crossrefs
Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Programs
-
Haskell
a030078 = a000578 . a000040 a030078_list = map a000578 a000040_list -- Reinhard Zumkeller, May 26 2012
-
Magma
[p^3: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 27 2014
-
Mathematica
Array[Prime[ # ]^3&, 5! ] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
-
PARI
a(n)=prime(n)^3 \\ Charles R Greathouse IV, Mar 20 2013
-
Python
from sympy import prime, primerange def aupton(terms): return [p**3 for p in primerange(1, prime(terms)+1)] print(aupton(35)) # Michael S. Branicky, Aug 27 2021
-
Sage
[p**3 for p in prime_range(100)] # Zerinvary Lajos, May 15 2007
Formula
n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)
Comments