A030295
Cubes with at most three distinct digits.
Original entry on oeis.org
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 2744, 3375, 8000, 27000, 46656, 64000, 238328, 343000, 778688, 1000000, 1030301, 1331000, 5177717, 7077888, 8000000, 9393931, 27000000, 64000000, 343000000, 700227072
Offset: 1
-
Select[Range[900]^3, Length@ Union@ IntegerDigits[#] <= 3 &] (* Michael De Vlieger, Feb 10 2020 *)
-
disdigs(n,nd)={my(v=vector(10),d=digits(n^3));for(j=1,#d,v[d[j]+1]=1);if(vecsum(v)<=nd,n^3,0)};
print1(0,", ");for(k=1,1000,if(j=disdigs(k,3),print1(j,", "))) \\ Hugo Pfoertner, Feb 10 2020
A202940
Positive numbers n such that n is not a multiple of 10 and n^3 has at most three different digits.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 36, 62, 92, 101, 173, 192, 211, 888, 1001, 3543, 10001, 100001, 110011, 146796, 1000001, 10000001, 100000001
Offset: 1
-
Select[Range[150000],Mod[#,10]!=0&&Count[DigitCount[#^3],0]>6&] (* The program generates the first 26 terms of the sequience. To generate more, increase the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Sep 04 2021 *)
-
for(n=1,10^9+1, if((n%10!=0) && #Set(digits(n^3))<=3, print1(n,", ")));
\\ Joerg Arndt, Dec 13 2014
A308708
Numbers k such that k^3 contains exactly three distinct digits; numbers with trailing zeros are excluded.
Original entry on oeis.org
5, 6, 8, 9, 14, 15, 36, 62, 92, 101, 173, 192, 211, 888, 1001, 3543, 10001, 100001, 110011, 146796, 1000001, 10000001, 100000001, 1000000001, 10000000001
Offset: 1
a(8) = 62 because 62^3 = 238328, which contains exactly three distinct digits.
-
[k:k in [1..10000001]| k mod 10 ne 0 and #Set(Intseq(k^3)) eq 3]; // Marius A. Burtea, Aug 02 2019
-
Select[Range[10001], Mod[#, 10] > 0 && Length@ Union@ IntegerDigits[#^3] == 3 &] (* Giovanni Resta, Sep 05 2019 *)
-
is(k) = #vecsort(digits(k^3), , 8)==3 && k%10!=0; \\ Jinyuan Wang, Aug 02 2019
A385175
Cubes using at most three distinct digits, not ending in 0.
Original entry on oeis.org
1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 2744, 3375, 46656, 238328, 778688, 1030301, 5177717, 7077888, 9393931, 700227072, 1003003001, 44474744007, 1000300030001, 1000030000300001, 1331399339931331, 3163316636166336, 1000003000003000001, 1000000300000030000001, 1000000030000000300000001
Offset: 1
8, 343, and 46656 belong to this list because they are cubes that use 1, 2, and 3 distinct digits, respectively.
-
Select[Range[10^6]^3,Length[Union[IntegerDigits[#]]]<4&&IntegerDigits[#][[-1]]!=0&] (* James C. McMahon, Jun 30 2025 *)
fQ[n_] := Mod[n, 10] > 0 && Length@ Union@ IntegerDigits[n^3] < 4; k = 1; lst = {}; While[k < 1000002, If[ fQ@k, AppendTo[lst, k]]; k++]; lst^3 (* Robert G. Wilson v, Jul 10 2025 *)
Showing 1-4 of 4 results.
Comments