cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386014 Distinct values occurring in first differences of A030655(n), listed in order of first appearance.

Original entry on oeis.org

22, 832, 202, 89302, 2002, 8993002, 20002, 899930002, 200002, 89999300002, 2000002, 8999993000002, 20000002, 899999930000002, 200000002, 89999999300000002, 2000000002, 8999999993000000002, 20000000002, 899999999930000000002, 200000000002, 89999999999300000000002, 2000000000002
Offset: 1

Views

Author

Carin Maria Sakin, Jul 14 2025

Keywords

Comments

A030655(t) = 2*t-1||2*t = (2*t-1)*10^k + 2*t, where || indicates digit concatenation and 2*t has digit length k.
Difference A030655(t+1) - A030655(t) = 2*(10^k+1) when 2*t and 2*t+2 are both digit length k and this is the odd n case in the formulas below.
2*t and 2*t+2 differ in length only at t = j(k) = 5*10^(k-1)-1 with 2*t+2 then having length k+1, and this is the even n case in the formulas below.

Examples

			At t = j(3) = 499, difference A030655(t+1) - A030655(t) = 9991000 - 997998 = 8993002 which is term a(6).
		

Crossrefs

Programs

  • Maple
    a := proc(n)
        if type(n, even) then
            k := n/2;
            return 9*100^k - 7*10^k + 2;
        else
            k := (n + 1)/2;
            return 2*(10^k + 1);
        end if;
    end proc:
    seq(a(n), n=1..12);
  • Mathematica
    a[n_] := Which[
      EvenQ[n], Module[{k = n/2}, 9*100^k - 7*10^k + 2],
      OddQ[n], Module[{k = (n + 1)/2}, 2*(10^k + 1)]
    ];
    Table[a[n], {n, 1, 12}]
  • PARI
    a(n) = if(n%2==1, 2*10^((n+1)/2)+2, 9*10^n - 7*10^(n/2) + 2) \\ David A. Corneth, Jul 17 2025
  • Python
    def a(n):
        k = (n + 1)//2
        if n % 2 == 0:
            return 9 * 100**k - 7 * 10**k + 2
        else:
            return 2 * (10**k + 1)
    

Formula

a(n) = 2*(10^k + 1) for odd n, where k = (n+1)/2.
a(n) = 9*100^k - 7*10^k + 2 for even n, where k = n/2.

Extensions

More terms from Michel Marcus, Jul 16 2025
More terms from David A. Corneth, Jul 17 2025

A030656 Pair up the numbers.

Original entry on oeis.org

1, 23, 45, 67, 89, 1011, 1213, 1415, 1617, 1819, 2021, 2223, 2425, 2627, 2829, 3031, 3233, 3435, 3637, 3839, 4041, 4243, 4445, 4647, 4849, 5051, 5253, 5455, 5657, 5859, 6061, 6263, 6465, 6667, 6869, 7071, 7273, 7475, 7677, 7879, 8081, 8283, 8485, 8687, 8889
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030655.
Subsequence of A005408.

Programs

  • Magma
    [Seqint(Intseq(n+1) cat Intseq(n)): n in [0..86 by 2]];  // Bruno Berselli, Jun 18 2011
    
  • Mathematica
    seq[n_] := FromDigits[Flatten[IntegerDigits /@ #]] & /@ Partition[Range[0, (n + 1)*2], 2];
    seq[44] (* Harvey P. Dale, Jan 24 2012, edited by Robert P. P. McKone, Jan 23 2021 *)
  • PARI
    a(n)=eval(Str(2*n,2*n+1)) \\ Charles R Greathouse IV, Jul 21 2016
    
  • Python
    def a(n): return int(str(2*n)+str(2*n+1))
    print([a(n) for n in range(45)]) # Michael S. Branicky, Jan 23 2021

Extensions

More terms from Erich Friedman

A098080 Nontrivial slowest increasing sequence whose succession of digits is that of the nonnegative integers.

Original entry on oeis.org

0, 12, 34, 56, 78, 910, 1112, 1314, 1516, 1718, 1920, 2122, 2324, 2526, 2728, 2930, 3132, 3334, 3536, 3738, 3940, 4142, 4344, 4546, 4748, 4950, 5152, 5354, 5556, 5758, 5960, 6162, 6364, 6566, 6768, 6970, 7172, 7374, 7576, 7778, 7980, 8182, 8384, 8586, 8788, 8990, 9192, 9394, 9596, 9798, 99100, 101102
Offset: 0

Views

Author

Keywords

Comments

Beginning with 1, 23, 45, etc. gives a similar sequence which however grows more quickly. Other sequences can be generated by varying the "template" of the succession of digits (such as the decimal expansion of Pi, e, and so on).
1, 23, 45, 67, 89, 101, 112, 131, 415, 1617, 1819, 2021, 2223, ..., 9899, 10010, 110210, 310410, 510610, 710810, 911011, 1112113, ... does grow faster, but what about 1, 23, 45, 67, 89, 101, 112, 131, 415, 1617, ..., (2k)(2k+1), ...? The claim of "slowest" requires that after a(1), the smallest possible option must always be used (9899->10010 instead of 9899->100101). - Danny Rorabaugh, Nov 27 2015

Crossrefs

Cf. A030655.

Programs

  • Mathematica
    jd[{a_,b_}]:=Module[{ida=IntegerDigits[a],idb=IntegerDigits[b]}, FromDigits[ Join[ida,idb]]]; Join[{0},jd/@Partition[Range[110],2]] (* Harvey P. Dale, Feb 20 2012 *)

Formula

Write down the sequence of nonnegative integers and consider its succession of digits. Divide up into chunks of minimal length (and not beginning with 0) so that chunks are increasing numbers in order to form the slowest ever increasing sequence of slices (disregarding the number of digits) of the succession of the digits of the whole numbers.

A248556 Concatenate (3n-2,3n-1,3n).

Original entry on oeis.org

123, 456, 789, 101112, 131415, 161718, 192021, 222324, 252627, 282930, 313233, 343536, 373839, 404142, 434445, 464748, 495051, 525354, 555657, 585960, 616263, 646566, 676869, 707172, 737475, 767778, 798081, 828384, 858687, 888990, 919293, 949596, 979899
Offset: 1

Views

Author

Charles Duvall, Oct 08 2014

Keywords

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(n+1) cat Intseq(n) cat Intseq(n-1)): n in [2..100 by 3]]; // Vincenzo Librandi, Oct 21 2014
    
  • Maple
    conc3:= (a,b,c) -> c + 10^(1+ilog10(c))*(b+10^(1+ilog10(b))*a):
    seq(conc3(3*k-2,3*k-1,3*k), k=1..100); # Robert Israel, Oct 23 2014
  • Mathematica
    FromDigits[Flatten[IntegerDigits/@{#}]]&/@Partition[Range[100], 3] (* Vincenzo Librandi, Oct 21 2014 *)
  • PARI
    a(n)=eval(Str(3*n-2,3*n-1,3*n)) \\ M. F. Hasler, Oct 22 2014

Extensions

More terms from Vincenzo Librandi, Oct 21 2014
Showing 1-4 of 4 results.