cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A030999 Position of n-th 0 in A030998.

Original entry on oeis.org

0, 8, 22, 36, 50, 64, 78, 92, 93, 95, 98, 101, 104, 107, 110, 114, 135, 156, 177, 198, 219, 239, 240, 242, 245, 248, 251, 254, 257, 261, 282, 303, 324, 345, 366, 386, 387, 389, 392, 395, 398, 401, 404, 408, 429, 450, 471, 492, 513
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Rest[Flatten[Position[Flatten[IntegerDigits[#,7]&/@Range[0,200]], 0]]]-1 (* Harvey P. Dale, Oct 10 2011 *)

Extensions

Missing a(1)=0 inserted by Sean A. Irvine, Apr 10 2020

A031000 Position of n-th 1 in A030998.

Original entry on oeis.org

1, 7, 9, 10, 11, 13, 15, 17, 19, 24, 38, 52, 66, 80, 91, 94, 96, 97, 100, 103, 106, 109, 112, 113, 115, 116, 117, 118, 119, 121, 122, 124, 125, 127, 128, 130, 131, 133, 136, 138, 139, 142, 145, 148, 151, 154, 157, 159, 160, 163, 166
Offset: 1

Views

Author

Keywords

A031001 Position of n-th 2 in A030998.

Original entry on oeis.org

2, 12, 21, 23, 25, 26, 27, 29, 31, 33, 40, 54, 68, 82, 99, 120, 134, 137, 140, 141, 143, 146, 149, 152, 162, 183, 204, 225, 238, 241, 244, 246, 247, 250, 253, 256, 259, 262, 265, 267, 268, 271, 274, 277, 280, 281, 283, 284, 286
Offset: 1

Views

Author

Keywords

A031002 Position of n-th 3 in A030998.

Original entry on oeis.org

3, 14, 28, 35, 37, 39, 41, 42, 43, 45, 47, 56, 70, 84, 102, 123, 144, 155, 158, 161, 164, 165, 167, 170, 173, 186, 207, 228, 249, 270, 291, 302, 305, 308, 311, 312, 314, 317, 320, 333, 354, 375, 385, 388, 391, 394, 396, 397, 400
Offset: 1

Views

Author

Keywords

A031003 Position of n-th 4 in A030998.

Original entry on oeis.org

4, 16, 30, 44, 49, 51, 53, 55, 57, 58, 59, 61, 72, 86, 105, 126, 147, 168, 176, 179, 182, 185, 188, 189, 191, 194, 210, 231, 252, 273, 294, 315, 323, 326, 329, 332, 335, 336, 338, 341, 357, 378, 399, 420, 441, 462, 470, 473, 476
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Flatten[Position[Flatten[IntegerDigits[#,7]&/@Range[0,200]],4]]-1 (* Harvey P. Dale, May 06 2014 *)

A031004 Position of n-th 5 in A030998.

Original entry on oeis.org

5, 18, 32, 46, 60, 63, 65, 67, 69, 71, 73, 74, 75, 88, 108, 129, 150, 171, 192, 197, 200, 203, 206, 209, 212, 213, 215, 234, 255, 276, 297, 318, 339, 344, 347, 350, 353, 356, 359, 360, 362, 381, 402, 423, 444, 465, 486, 491, 494
Offset: 1

Views

Author

Keywords

A031005 Position of n-th 6 in A030998.

Original entry on oeis.org

6, 20, 34, 48, 62, 76, 77, 79, 81, 83, 85, 87, 89, 90, 111, 132, 153, 174, 195, 216, 218, 221, 224, 227, 230, 233, 236, 237, 258, 279, 300, 321, 342, 363, 365, 368, 371, 374, 377, 380, 383, 384, 405, 426, 447, 468, 489, 510, 512
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Flatten[Position[Flatten[IntegerDigits[#,7]&/@Range[0,200]],6]]-1 (* Harvey P. Dale, Mar 25 2019 *)

A031006 a(n)=least k such that base 7 representation of n begins at s(k), where s=A030998.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 1, 13, 15, 17, 19, 21, 12, 25, 2, 29, 31, 33, 35, 14, 28, 41, 3, 45, 47, 49, 16, 30, 44, 57, 4, 61, 63, 18, 32, 46, 60, 73, 5, 77, 6, 20, 34, 48, 62, 76, 91, 7, 97, 100, 103, 106, 109, 96, 9, 10, 121, 124, 127, 130, 133, 11
Offset: 1

Views

Author

Keywords

A033307 Decimal expansion of Champernowne constant (or Mahler's number), formed by concatenating the positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5
Offset: 0

Views

Author

Keywords

Comments

This number is known to be normal in base 10.
Named after David Gawen Champernowne (July 9, 1912 - August 19, 2000). - Robert G. Wilson v, Jun 29 2014

Examples

			0.12345678910111213141516171819202122232425262728293031323334353637383940414243...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
  • G. Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), 149-166, A K Peters, Natick, MA, 2002.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 364.
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 172.

Crossrefs

See A030167 for the continued fraction expansion of this number.
A007376 is the same sequence but with a different interpretation.
Cf. A007908, A000027, A001191 (concatenate squares).
Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b = 2), A003137 and A054635 (b = 3), A030373 (b = 4), A031219 (b = 5), A030548 (b = 6), A030998 (b = 7), A031035 and A054634 (b = 8), A031076 (b = 9), A007376 and this sequence (b = 10). - Jason Kimberley, Dec 06 2012
Cf. A065648.
Cf. A365237 (reciprocal).

Programs

  • Haskell
    a033307 n = a033307_list !! n
    a033307_list = concatMap (map (read . return) . show) [1..] :: [Int]
    -- Reinhard Zumkeller, Aug 27 2013, Mar 28 2011
    
  • Magma
    &cat[Reverse(IntegerToSequence(n)):n in[1..50]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[IntegerDigits/@Range[0, 57]] (* Or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* Robert G. Wilson v, Jul 23 2012 and modified Jul 04 2014 *)
    intermediate[n_] := Ceiling[FullSimplify[ProductLog[Log[10]/10^(1/9) (n - 1/9)] / Log[10] + 1/9]]; champerDigit[n_] := Mod[Floor[10^(Mod[n + (10^intermediate[n] - 10)/9, intermediate[n]] - intermediate[n] + 1) Ceiling[(9n + 10^intermediate[n] - 1)/(9intermediate[n]) - 1]], 10]; (* David W. Cantrell, Feb 18 2007 *)
    First[RealDigits[ChampernowneNumber[], 10, 100]] (* Paolo Xausa, May 02 2024 *)
  • PARI
    { default(realprecision, 20080); x=0; y=1; d=10.0; e=1.0; n=0; while (y!=x, y=x; n++; if (n==d, d=d*10); e=e*d; x=x+n/e; ); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b033307.txt", n, " ", d)); } \\ Harry J. Smith, Apr 20 2009
    
  • Python
    from itertools import count
    def agen():
        for k in count(1): yield from list(map(int, str(k)))
    a = agen()
    print([next(a) for i in range(104)]) # Michael S. Branicky, Sep 13 2021
  • Scala
    val numerStr = (1 to 100).map(Integer.toString()).toList.reduce( + _)
    numerStr.split("").map(Integer.parseInt()).toList // _Alonso del Arte, Nov 04 2019
    

Formula

Let "index" i = ceiling( W(log(10)/10^(1/9) (n - 1/9))/log(10) + 1/9 ) where W denotes the principal branch of the Lambert W function. Then a(n) = (10^((n + (10^i - 10)/9) mod i - i + 1) * ceiling((9n + 10^i - 1)/(9i) - 1)) mod 10. See also Mathematica code. - David W. Cantrell, Feb 18 2007

A007376 The almost-natural numbers: write n in base 10 and juxtapose digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7
Offset: 0

Views

Author

Keywords

Comments

Also called the Barbier infinite word.
This is an example of a non-morphic sequence.
a(n) = A162711(n,1); A136414(n) = 10*a(n) + a(n+1). - Reinhard Zumkeller, Jul 11 2009
a(A031287(n)) = 0, a(A031288(n)) = 1, a(A031289(n)) = 2, a(A031290(n)) = 3, a(A031291(n)) = 4, a(A031292(n)) = 5, a(A031293(n)) = 6, a(A031294(n)) = 7, a(A031295(n)) = 8, a(A031296(n)) = 9. - Reinhard Zumkeller, Jul 28 2011
May be regarded as an irregular table in which the n-th row lists the digits of n. - Jason Kimberley, Dec 07 2012
The digits of the integer n start at index A117804(n). The digit a(n) at index n belongs to the number A100470(n). - M. F. Hasler, Oct 23 2019
See also the Copeland-Erdős constant A033308, equivalent using primes instead of all numbers. - M. F. Hasler, Oct 24 2019
Decimal expansion of Sum_{k>=1} k/10^(A058183(k) + 1). - Stefano Spezia, Nov 30 2022

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 114, 336.
  • R. Honsberger, Mathematical Chestnuts from Around the World, MAA, 2001; see p. 163.
  • M. Kraitchik, Mathematical Recreations. Dover, NY, 2nd ed., 1953, p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 26.

Crossrefs

Considered as a sequence of digits, this is the same as the decimal expansion of the Champernowne constant, A033307. See that entry for a formula for a(n), further references, etc.
Cf. A054632 (partial sums), A023103.
Cf. A193428, A256100, A001477 (the nonnegative integers), A117804, A100470.
Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), this sequence and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Row lengths in A055642.
For primes here see A071620. See A007908 for a very similar sequence.

Programs

  • Haskell
    a007376 n = a007376_list !! (n-1)
    a007376_list = concatMap (map (read . return) . show) [0..] :: [Int]
    -- Reinhard Zumkeller, Nov 11 2013, Dec 17 2011, Mar 28 2011
    
  • Magma
    &cat[Reverse(IntegerToSequence(n)):n in[0..31]]; // Jason Kimberley, Dec 07 2012
    
  • Maple
    c:=proc(x,y) local s: s:=proc(m) nops(convert(m,base,10)) end: if y=0 then 10*x else x*10^s(y)+y: fi end: b:=proc(n) local nn: nn:=convert(n,base,10):[seq(nn[nops(nn)+1-i],i=1..nops(nn))] end: A:=0: for n from 1 to 75 do A:=c(A,n) od: b(A); # c concatenates 2 numbers while b converts a number to the sequence of its digits - Emeric Deutsch, Jul 27 2006
    #alternative
    A007376 := proc(n) option remember ; local aprev, dOld,N ; if n <=9 then RETURN([n,n,1]) ; else aprev := A007376(n-1) ; dOld := op(3,aprev) ; N := op(2,aprev) ; if dOld < A055642(N) then RETURN([op(-dOld-1,convert(N,base,10)),N,dOld+1]) ; else RETURN([op(-1,convert(N+1,base,10)),N+1,1]) ; fi ; fi ; end: # R. J. Mathar, Jan 21 2008
  • Mathematica
    Flatten[ IntegerDigits /@ Range@ 57] (* Or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* updated Jun 29 2014 *)
    With[{nn=120},RealDigits[N[ChampernowneNumber[],nn],10,nn]][[1]] (* Harvey P. Dale, Mar 13 2018 *)
  • PARI
    for(n=0,90,v=digits(n);for(i=1,#v,print1(v[i]", "))) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    apply( A007376(n)={for(k=1,n, k*10^k>n&& return(digits(n\k)[n%k+1]); n+=10^k)}, [0..200]) \\ M. F. Hasler, Nov 03 2019
    
  • Python
    A007376_list = [int(d) for n in range(10**2) for d in str(n)] # Chai Wah Wu, Feb 04 2015

Extensions

Extended to a(0) = 0 by M. F. Hasler, Oct 23 2019
Showing 1-10 of 28 results. Next