cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A031441 a(0) = 3; for n > 0, a(n) is the greatest prime factor of PreviousPrime(a(n-1))*a(n-1)-1 where PreviousPrime(prime(k))=prime(k-1).

Original entry on oeis.org

3, 5, 7, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23, 109, 17, 11, 19, 23
Offset: 0

Views

Author

Keywords

Examples

			To get a(3) we compute PreviousPrime(7)=5, 5*7-1=34, greatest prime factor of 34 is 17, so a(3)=17.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[n_] := a[n] = FactorInteger[ NextPrime[ a[n-1], -1]*a[n-1] - 1][[-1, 1]]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Mar 09 2012 *)
    NestList[FactorInteger[NextPrime[#,-1]*#-1][[-1,1]]&,3,70] (* Harvey P. Dale, Dec 13 2012 *)

Extensions

More terms from James Sellers

A082021 a(0) = 7; for n > 0, a(n) is the greatest prime factor of PP(PP(a(n-1)))*a(n-1)+2 where PP(n) is an abbreviation for PreviousPrime(n).

Original entry on oeis.org

7, 23, 131, 47, 643, 2459, 2000807, 503347241, 82125909539251, 9617692012399, 55555555342491359799151, 1116817987709786226917069, 578610396154837, 66992050984853, 254497141, 1660738053545999, 201525986561, 25600818891233, 796725607788661087, 23547857117470471
Offset: 0

Views

Author

Yasutoshi Kohmoto, May 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    NestWhileList[FactorInteger[2+#*Prime[PrimePi[ # ]-2]][[ -1,1]] &, 7, True, 8] (* T. D. Noe, Nov 15 2006 *)
    NestList[FactorInteger[NextPrime[NextPrime[#,-1],-1]#+2][[-1,1]]&,7,20] (* Harvey P. Dale, Dec 26 2017 *)

Extensions

Description corrected by Rick L. Shepherd, Dec 19 2004
Corrected by T. D. Noe, Nov 15 2006
More terms from Harvey P. Dale, Dec 26 2017
a(19) from Tyler Busby, Oct 12 2023

A082132 a(0) = 5; for n > 0, a(n) is the greatest prime factor of PP(a(n-1))*a(n-1)-2 where PP(n) is an abbreviation for PreviousPrime(n).

Original entry on oeis.org

5, 13, 47, 673, 1093, 4789, 15887, 6961, 7079, 1853387, 5636791, 16319158451, 46975091221, 97536826417, 9513432505744326182381, 2335222008886384800739, 7440517660385876970522347503153, 83914607657246408236765553419, 1960358081272210906656999086971746456168551
Offset: 0

Views

Author

Yasutoshi Kohmoto, May 10 2003

Keywords

Comments

Some of the larger entries may only correspond to probable primes.

Crossrefs

Programs

  • PARI
    p=5;for(k=1,20,print1(p,",");p=precprime(p-1)*p-2;f=factor(p);s=matsize(f)[1];p=f[s,1]) \\ Rick L. Shepherd, Dec 19 2004

Extensions

Edited by Rick L. Shepherd, Dec 19 2004
a(18) from Tyler Busby, Oct 22 2023

A083557 a(n) is the greatest prime factor of 3*a(n-1)+2.

Original entry on oeis.org

3, 11, 7, 23, 71, 43, 131, 79, 239, 719, 127, 383, 1151, 691, 83, 251, 151, 13, 41, 5, 17, 53, 23, 71, 43, 131, 79, 239, 719, 127, 383, 1151, 691, 83, 251, 151, 13, 41, 5, 17, 53, 23, 71, 43, 131, 79, 239, 719, 127, 383, 1151, 691, 83, 251, 151, 13, 41, 5, 17, 53, 23
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

Conjecture: if a(1)=m then the sequence becomes cyclic, for any m.
Conjecture verified up to 25000000 by Jud McCranie, Jun 11 2003

Crossrefs

Programs

  • Mathematica
    f[n_] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[ 3n + 2 ]][[ -1]]; NestWhileList[f, 3, UnsameQ, All]
    NestList[FactorInteger[3#+2][[-1,1]]&,3,70] (* Harvey P. Dale, Feb 21 2013 *)
  • PARI
    lista(nn) = {print1(a = 3, ", "); for (n=1, nn, a = vecmax(factor(3*a+2)[,1]); print1(a, ", "););} \\ Michel Marcus, Jul 15 2017

Formula

G.f.: x*(3 + 11*x + 7*x^2 + 23*x^3 + 71*x^4 + 43*x^5 + 131*x^6 + 79*x^7 + 239*x^8 + 719*x^9 + 127*x^10 + 383*x^11 + 1151*x^12 + 691*x^13 + 83*x^14 + 251*x^15 + 151*x^16 + 13*x^17 + 41*x^18 + 2*x^19 + 6*x^20 + 46*x^21) / (1 - x^19) (conjectured). - Colin Barker, Jul 15 2017
Showing 1-4 of 4 results.