cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A031442 a(0) = 13; for n > 0, a(n) is the greatest prime factor of PreviousPrime(a(n-1))*a(n-1)-1 where PreviousPrime(prime(k))=prime(k-1).

Original entry on oeis.org

13, 71, 41, 379, 23561, 5431, 20269, 89, 1231, 44497, 329952671, 36583, 1126159, 90209117, 14095897, 15272393, 13887359, 256460794943, 2740505805180429880723, 1591234463080874838018721796071210709
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A031441.

Programs

  • Mathematica
    NestList[FactorInteger[#*NextPrime[#,-1]-1][[-1,1]]&,13,20] (* Harvey P. Dale, May 26 2025 *)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 23 2000. a(19) and a(20) pass the strong pseudoprime test for many bases.
Edited by T. D. Noe, Oct 30 2008

A082021 a(0) = 7; for n > 0, a(n) is the greatest prime factor of PP(PP(a(n-1)))*a(n-1)+2 where PP(n) is an abbreviation for PreviousPrime(n).

Original entry on oeis.org

7, 23, 131, 47, 643, 2459, 2000807, 503347241, 82125909539251, 9617692012399, 55555555342491359799151, 1116817987709786226917069, 578610396154837, 66992050984853, 254497141, 1660738053545999, 201525986561, 25600818891233, 796725607788661087, 23547857117470471
Offset: 0

Views

Author

Yasutoshi Kohmoto, May 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    NestWhileList[FactorInteger[2+#*Prime[PrimePi[ # ]-2]][[ -1,1]] &, 7, True, 8] (* T. D. Noe, Nov 15 2006 *)
    NestList[FactorInteger[NextPrime[NextPrime[#,-1],-1]#+2][[-1,1]]&,7,20] (* Harvey P. Dale, Dec 26 2017 *)

Extensions

Description corrected by Rick L. Shepherd, Dec 19 2004
Corrected by T. D. Noe, Nov 15 2006
More terms from Harvey P. Dale, Dec 26 2017
a(19) from Tyler Busby, Oct 12 2023

A034970 a(n) is the greatest prime factor of a(n-2)*a(n-1)-1.

Original entry on oeis.org

2, 3, 5, 7, 17, 59, 167, 821, 2539, 1042259, 508903, 5765312303, 1461701, 1404527126434567, 2034580216153, 97552206663238517, 3105563257, 46137561830961960349, 9777395920402541, 6719860896292085951563127, 5367788603966004659, 33011914147
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a034970 n = a034970_list !! n
    a034970_list = 2 : 3 : (map (a006530 . (subtract 1)) $
                            zipWith (*) a034970_list $ tail a034970_list)
    -- Reinhard Zumkeller, Feb 23 2012
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n<2, n+2,
          max(factorset(a(n-2)*a(n-1)-1)[]))
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 03 2014
  • Mathematica
    a[0] = 2; a[1] = 3; a[n_] := a[n] = FactorInteger[ a[n-2]*a[n-1] - 1][[-1, 1]]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Mar 09 2012 *)
    nxt[{a_,b_}]:={b,FactorInteger[a*b-1][[-1,1]]}; Transpose[NestList[nxt,{2,3},25]][[1]] (* Harvey P. Dale, Apr 05 2014 *)
  • PARI
    A034970(a,b) = {local(f);f=factor(a*b-1);f[matsize(f)[1],1]}
    a=2;b=3;print(a);print(b)
    for(n=2,28,c=A034970(a,b);print(c);a=b;b=c)
    

Extensions

More terms from James Sellers
Terms corrected by Michael B. Porter, Mar 14 2010

A082132 a(0) = 5; for n > 0, a(n) is the greatest prime factor of PP(a(n-1))*a(n-1)-2 where PP(n) is an abbreviation for PreviousPrime(n).

Original entry on oeis.org

5, 13, 47, 673, 1093, 4789, 15887, 6961, 7079, 1853387, 5636791, 16319158451, 46975091221, 97536826417, 9513432505744326182381, 2335222008886384800739, 7440517660385876970522347503153, 83914607657246408236765553419, 1960358081272210906656999086971746456168551
Offset: 0

Views

Author

Yasutoshi Kohmoto, May 10 2003

Keywords

Comments

Some of the larger entries may only correspond to probable primes.

Crossrefs

Programs

  • PARI
    p=5;for(k=1,20,print1(p,",");p=precprime(p-1)*p-2;f=factor(p);s=matsize(f)[1];p=f[s,1]) \\ Rick L. Shepherd, Dec 19 2004

Extensions

Edited by Rick L. Shepherd, Dec 19 2004
a(18) from Tyler Busby, Oct 22 2023
Showing 1-4 of 4 results.