cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A300406 Primes of the form 13*2^n + 1.

Original entry on oeis.org

53, 3329, 13313, 13631489, 3489660929, 62864142619960717084721153, 5100145160001678120616578906356228963083163798627028041729, 6779255729241169695101387251026410519979286814120235842117075415451380965612384558178346467329, 1735489466685739441945955136262761093114697424414780375581971306355553527196770446893656695635969
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A032356.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->13*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 13*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,13), n=1..316);
  • Mathematica
    Select[Table[13 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 06 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=13*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A168596(A032356(n)). - Michel Marcus, Mar 29 2018

A001773 Numbers k such that 13*2^k - 1 is prime.

Original entry on oeis.org

3, 7, 23, 287, 291, 795, 2203, 5711, 7927, 9443, 10095, 19071, 29611, 34651, 51875, 55343, 77511, 166303, 233207
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A032356 (13*2^k+1 is prime).

Programs

Extensions

More terms from Hugo Pfoertner, Jun 23 2004

A002257 Numbers k such that 13*4^k + 1 is prime.

Original entry on oeis.org

1, 4, 5, 10, 14, 41, 94, 154, 158, 500, 14140, 19004, 21928, 44009, 54629, 57148, 260653, 281228, 342280, 519448, 749938, 930866
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A032356 (n such that 13*2^n+1 is prime) for more terms.

Programs

  • Magma
    [ k: k in [1..800]|IsPrime(13*4^k+1)]; // Vincenzo Librandi, Nov 21 2010
    
  • Mathematica
    Select[Range[2000],PrimeQ[13 4^#+1]&] (* Harvey P. Dale, Jan 22 2011 *)
  • PARI
    for(k=1,10^5,if(ispseudoprime(13*4^k+1),print1(k, ", "))); /* Joerg Arndt, Apr 07 2013 */

Extensions

Added more terms (from A032356), Joerg Arndt, Apr 07 2013

A361076 Array, read by ascending antidiagonals, whose n-th row consists of the powers of 2, if n = 1; of the primes of the form (2*n-1)*2^k+1, if they exist and n > 1; and of zeros otherwise.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 3, 5, 8, 1, 4, 7, 6, 16, 1, 2, 6, 13, 8, 32, 2, 3, 3, 14, 15, 12, 64, 1, 8, 5, 6, 20, 25, 18, 128, 3, 2, 10, 7, 7, 26, 39, 30, 256, 6, 15, 4, 20, 19, 11, 50, 55, 36, 512, 1, 10, 27, 9, 28, 21, 14, 52, 75, 41, 1024, 1, 4, 46, 51, 10, 82, 43, 17, 92, 85, 66, 2048
Offset: 1

Views

Author

Keywords

Comments

Is a(n) <= A279709(n)?

Examples

			Table starts
  1   2   4   8  16  32  64 128 ... A000079
  1   2   5   6   8  12  18  30 ... A002253
  1   3   7  13  15  25  39  55 ... A002254
  2   4   6  14  20  26  50  52 ... A032353
  1   2   3   6   7  11  14  17 ... A002256
  1   3   5   7  19  21  43  81 ... A002261
  2   8  10  20  28  82 188 308 ... A032356
  1   2   4   9  10  12  27  37 ... A002258
  ...
(2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
		

Crossrefs

Programs

  • PARI
    vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v;
    lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ Michel Marcus, Mar 03 2023
Showing 1-4 of 4 results.