cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A107008 Primes of the form x^2 + 24*y^2.

Original entry on oeis.org

73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713
Offset: 1

Author

T. D. Noe, May 09 2005

Keywords

Comments

Presumably this is the same as primes congruent to 1 mod 24, so a(n) = 24*A111174(n) + 1. - N. J. A. Sloane, Jul 11 2008. Checked for all terms up to 2 million. - Vladimir Joseph Stephan Orlovsky, May 18 2011.
Discriminant = -96.
Also primes of the forms x^2 + 48*y^2 and x^2 + 72*y^2. See A140633. - T. D. Noe, May 19 2008
Primes of the quadratic form are a subset of the primes congruent to 1 (mod 24). [Proof. For 0 <= x, y <= 23, the only values mod 24 that x^2 + 24*y^2 can take are 0, 1, 4, 9, 12 or 16. All of these r except 1 have gcd(r, 24) > 1 so if x^2 + 24*y^2 is prime its remainder mod 24 must be 1.] - David A. Corneth, Jun 08 2020
More advanced mathematics seems to be needed to determine whether this sequence lists all primes congruent to 1 (mod 24). Note the significance of 24 being a convenient number, as described in A000926. See also Sloane et al., Binary Quadratic Forms and OEIS, which explains how the table in A139642 may be used for this determination. - Peter Munn, Jun 21 2020
Primes == 1 (mod 2^3*3) are the intersection of the primes == 1 (mod 2^3) in A007519 and the primes == 1 (mod 3) in A002476, by the Chinese remainder theorem. - R. J. Mathar, Jun 11 2020

Crossrefs

Subset of A033199 (2y here = y there).
Is this the same as A141375?
See also the cross-references in A140633.

Programs

  • Mathematica
    QuadPrimes[1, 0, 24, 10000] (* see A106856 *)
  • PARI
    is(n) = isprime(n) && #qfbsolve(Qfb(1, 0, 24), n) == 2 \\ David A. Corneth, Jun 21 2020

Extensions

Recomputed b-file, deleted incorrect Mma program. - N. J. A. Sloane, Jun 08 2014

A155716 Numbers of the form N = a^2 + 6b^2 for some positive integers a,b.

Original entry on oeis.org

7, 10, 15, 22, 25, 28, 31, 33, 40, 42, 49, 55, 58, 60, 63, 70, 73, 79, 87, 88, 90, 97, 100, 103, 105, 106, 112, 118, 121, 124, 127, 132, 135, 145, 150, 151, 154, 159, 160, 166, 168, 175, 177, 186, 193, 196, 198, 199, 202, 214, 217, 220, 223, 225, 231, 232, 240
Offset: 1

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A002481 (which allows for a and b to be zero).
Primes are in A033199. - Bernard Schott, Sep 20 2019

Programs

  • Mathematica
    With[{upto=240},Select[Union[#[[1]]^2+6#[[2]]^2&/@Tuples[ Range[Sqrt[ upto]], 2]],#<=upto&]] (* Harvey P. Dale, Aug 05 2016 *)
  • PARI
    isA155716(n,/* optional 2nd arg allows us to get other sequences */c=6) = { for(b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,999, isA155716(n) & print1(n","))
    
  • PARI
    upto(n) = my(res=List()); for(i=1,sqrtint(n),for(j=1, sqrtint((n - i^2) \ 6), listput(res, i^2 + 6*j^2))); listsort(res,1); res \\ David A. Corneth, Sep 18 2019

A002481 Numbers of form x^2 + 6y^2.

Original entry on oeis.org

0, 1, 4, 6, 7, 9, 10, 15, 16, 22, 24, 25, 28, 31, 33, 36, 40, 42, 49, 54, 55, 58, 60, 63, 64, 70, 73, 79, 81, 87, 88, 90, 96, 97, 100, 103, 105, 106, 112, 118, 121, 124, 127, 132, 135, 144, 145, 150, 151, 154, 159, 160, 166, 168, 169, 175, 177, 186, 193, 196, 198, 199, 202, 214
Offset: 1

Keywords

Comments

Norms of numbers in Z[sqrt(-6)]. - Alonso del Arte, Sep 23 2014
It seems that a positive integer n is in this sequence if and only if the p-adic order ord_p(n) of n is even for any prime p with floor(p/12) odd, and the number of prime divisors p == 5 or 11 (mod 24) with ord_p(n) odd has the same parity with ord_2(n) + ord_3(n). - Zhi-Wei Sun, Mar 24 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get all terms <= N
    {seq(seq(a^2 + 6*b^2, a = 0 .. floor(sqrt(N-6*b^2))), b = 0 .. floor(sqrt(N/6)))};
    # for Maple 11, or earlier, uncomment the next line
    # sort(convert(%,list));  # Robert Israel, Sep 24 2014
  • Mathematica
    lim = 10^4; k = 6; Union@Flatten@Table[x^2 + k * y^2, {y, 0, Sqrt[lim/k]}, {x, 0, Sqrt[lim - k * y^2]}] (* Zak Seidov, Mar 30 2011 *)

A107006 Primes of the form 4x^2-4xy+7y^2, with x and y nonnegative.

Original entry on oeis.org

7, 31, 79, 103, 127, 151, 199, 223, 271, 367, 439, 463, 487, 607, 631, 727, 751, 823, 919, 967, 991, 1039, 1063, 1087, 1231, 1279, 1303, 1327, 1399, 1423, 1447, 1471, 1543, 1567, 1663, 1759, 1783, 1831, 1879, 1951, 1999, 2143, 2239, 2287, 2311
Offset: 1

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-96.
Also, primes of the form 24n+7. - Artur Jasinski, Nov 25 2007 [See the Reble link]
Also primes of the forms 4x^2+4xy+7y^2, 7x^2+6xy+15y^2, 7x^2+2xy+7y^2 and 7x^2+4xy+28y^2. See A140633. - T. D. Noe, May 19 2008
Also, primes of form u^2+6v^2 with odd v while sequence A107008 is even v. This can be seen by expressing its form as (2x-y)^2+6y^2 (where y can only be odd) while the latter is x^2+6(2y)^2. Additionally, this sequence is 7 mod 24 while the second is 1 mod 24 and together, they are the primes of form x^2+6y^2 (A033199) which are either {1,7} mod 24. - Tito Piezas III, Jan 01 2009

Crossrefs

Cf. A124477.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24n + 7], AppendTo[a, 24n + 7]], {n, 0, 100}]; a (* Artur Jasinski, Nov 25 2007 *)
    QuadPrimes2[4, -4, 7, 10000] (* see A106856 *)
    Select[24*Range[0,4000]+7,PrimeQ] (* Harvey P. Dale, May 13 2018 *)

Extensions

Recomputed b-file and deleted erroneous Mma program by N. J. A. Sloane, Jun 08 2014

A155712 Intersection of A092572 and A155716: N = a^2 + 3b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

7, 28, 31, 49, 63, 73, 79, 97, 100, 103, 112, 124, 127, 151, 175, 193, 196, 199, 217, 223, 241, 252, 271, 279, 292, 313, 316, 337, 343, 367, 388, 400, 409, 412, 433, 439, 441, 448, 457, 463, 484, 487, 496, 508, 511, 553, 567, 577, 601, 604, 607, 631, 657, 673
Offset: 1

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

From Robert Israel, Jan 19 2025: (Start)
If k is a term, then so is j^2 * k for all positive integers j.
The primes in this sequence appear to be A033199.
(End)

Programs

  • Maple
    N:= 1000: # for terms <= N
    A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))),a=1..floor(sqrt(N)))}
       intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))),c=1..floor(sqrt(N)))}:
    sort(convert(A,list)); # Robert Israel, Jan 19 2025
  • PARI
    isA155712(n,/* optional 2nd arg allows to get other sequences */c=[6,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return);1}
    for( n=1,999, isA155712(n) && print1(n",")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025

A216509 Primes which cannot be written in the form a^2 + 6*b^2.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 167, 173, 179, 181, 191, 197, 211, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 307, 311, 317, 331, 347, 349, 353
Offset: 1

Author

V. Raman, Sep 08 2012

Keywords

Comments

These are primes congruent to {5, 11, 13, 17, 19, 23} mod 24.

Crossrefs

Cf. A033199.
Showing 1-7 of 7 results.