cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A139484 Indices of Mersenne primes among primes of the form 24k + 7 (A107006).

Original entry on oeis.org

1, 2, 5, 129, 1536, 5430, 13138099
Offset: 2

Views

Author

Artur Jasinski, Apr 23 2008

Keywords

Comments

All Mersenne primes with the exception of the first one (3) are of the form 24*k + 7.
Sequence lists indices m where A139483(m) is a Mersenne prime.

Examples

			5 is in this sequence, because A107006(5) is a Mersenne prime.
		

Crossrefs

Programs

Extensions

Edited name and added example by Dmitry Kamenetsky, Jan 02 2011
a(8) from Charles R Greathouse IV, Mar 22 2011

A135983 a(n)=2^A107006(n)-1.

Original entry on oeis.org

127, 2147483647, 604462909807314587353087, 10141204801825835211973625643007, 170141183460469231731687303715884105727, 2854495385411919762116571938898990272765493247
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

A107006(n) are successive primes of the form 24n+7.

Crossrefs

Programs

  • Mathematica
    p = Select[24*Range[0, 20] + 7, PrimeQ]; 2^p - 1

A140633 Primes of the form 7x^2+4xy+52y^2.

Original entry on oeis.org

7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008

Crossrefs

Programs

  • Mathematica
    Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)

A088190 Largest quadratic residue modulo prime(n).

Original entry on oeis.org

1, 1, 4, 4, 9, 12, 16, 17, 18, 28, 28, 36, 40, 41, 42, 52, 57, 60, 65, 64, 72, 76, 81, 88, 96, 100, 100, 105, 108, 112, 124, 129, 136, 137, 148, 148, 156, 161, 162, 172, 177, 180, 184, 192, 196, 196, 209, 220, 225, 228, 232, 232, 240, 249, 256, 258, 268, 268, 276
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003

Keywords

Comments

Denote a(n) by LQR(p_n). Observations (tested up to 20000 primes): - the sequence of largest QR modulo the primes (LQR(p_n) is 'almost' monotonic, - p_n-LQR(p_n) is either 1 or a prime value (see A088192) - if LQR(p_n)<=LQR(p_{n-1}) then p_n==7 mod 8 (when n>2) (see A088194) - if LQR(p_n)<=LQR(p_{n-1}) then p_n-LQR(p_n) is an odd prime, but never 5 (see A088195) For a similar set of sequences, related to quadratic non-residues, see A088196-A088201.
From Robert Israel, Oct 31 2024: (Start)
a(n) = prime(n)-1 if and only if n is 1 or in A080147.
a(n) = prime(n)-2 if and only if prime(n) is in A007520.
a(n) = prime(n)-3 if and only if prime(n) is in A107006. (End)

Crossrefs

Programs

  • Maple
    lqr:= proc(p) local k;
      for k from p-1 by -1 do if numtheory:-quadres(k,p) = 1 then return k fi od:
    end proc:
    seq(lqr(ithprime(i)),i=1..100); # Robert Israel, Oct 31 2024
  • Mathematica
    a[n_] := With[{p = Prime[n]}, SelectFirst[Range[p - 1, 1, -1], JacobiSymbol[#, p] == 1&]]; Array[a, 100] (* Jean-François Alcover, Feb 16 2018 *)
  • PARI
    qrp(fr,to)= {/* Sequence of the largest QR modulo the primes */ local(m,p,v=[]); for(i=fr,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m
    				

Formula

a(n) = max(r, r==j^2 mod p(n)|j=1, 2, ...(p(n)-1)/2)

A033199 Primes of form x^2+6*y^2.

Original entry on oeis.org

7, 31, 73, 79, 97, 103, 127, 151, 193, 199, 223, 241, 271, 313, 337, 367, 409, 433, 439, 457, 463, 487, 577, 601, 607, 631, 673, 727, 751, 769, 823, 919, 937, 967, 991, 1009, 1033, 1039, 1063, 1087, 1129, 1153, 1201, 1231, 1249, 1279, 1297, 1303, 1321, 1327, 1399, 1423, 1447, 1471, 1489, 1543
Offset: 1

Views

Author

Keywords

Comments

Appears to also be the primes p such that p mod 6 = 1 and Fibonacci(p) mod 6 = 1. - Gary Detlefs, May 26 2014

Crossrefs

Cf. A139643, primes in A002481. Cf. A107006, A107008.

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | NormEquation(6,p) eq true]; // Bruno Berselli, Jul 03 2016
  • Mathematica
    f[x_, y_] := x^2 + 6*y^2; lst = {}; Do[p = f[x, y]; If[ PrimeQ[ p], AppendTo[ lst, p]], {y, 20}, {x, 50}]; Take[ Union[ lst], 50] (* Vladimir Joseph Stephan Orlovsky, Aug 04 2009 *)
  • PARI
    select(n->n%24==1||n%24==7, primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    

Formula

Same as primes congruent to 1 or 7 mod 24. See e.g. Cox, p. 36.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

Extensions

Removed defective Mma program; extended the b-file using Charles R Greathouse's PARI program. - N. J. A. Sloane, Jun 06 2014

A135657 Nonprimes of the form 24n+7.

Original entry on oeis.org

55, 175, 247, 295, 319, 343, 391, 415, 511, 535, 559, 583, 655, 679, 703, 775, 799, 847, 871, 895, 943, 1015, 1111, 1135, 1159, 1183, 1207, 1255, 1351, 1375, 1495, 1519, 1591, 1615, 1639, 1687, 1711, 1735, 1807, 1855, 1903, 1927, 1975, 2023, 2047, 2071
Offset: 1

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | not IsPrime(a) where a is 24*n+7]; // Vincenzo Librandi, Mar 22 2014
  • Mathematica
    a = {}; Do[If[PrimeQ[24n + 7],[null], AppendTo[a, 24n + 7]], {n, 0, 1000}]; a
    Select[24 Range[100] + 7, ! PrimeQ@# &] (* Vincenzo Librandi, Mar 22 2014 *)

A135659 a(n) = 24*n + 7.

Original entry on oeis.org

7, 31, 55, 79, 103, 127, 151, 175, 199, 223, 247, 271, 295, 319, 343, 367, 391, 415, 439, 463, 487, 511, 535, 559, 583, 607, 631, 655, 679, 703, 727, 751, 775, 799, 823, 847, 871, 895, 919, 943, 967, 991, 1015, 1039, 1063, 1087, 1111, 1135, 1159, 1183, 1207
Offset: 0

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Comments

Conjecture: All Mersenne Primes (A000668) > 3 are in this sequence.

Crossrefs

Programs

  • Mathematica
    Table[24n + 7, {n, 0, 100}]
    LinearRecurrence[{2,-1},{7,31},60] (* Harvey P. Dale, Jul 14 2013 *)

Formula

From Colin Barker, Apr 02 2012: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (7+17*x)/(1-x)^2. (End)
E.g.f.: (7 + 24*x)*exp(x). - G. C. Greubel, Oct 25 2016

Extensions

Offset changed to 0 by Omar E. Pol, Oct 25 2016

A135982 a(n) = 2^(24n+7)-1.

Original entry on oeis.org

127, 2147483647, 36028797018963967, 604462909807314587353087, 10141204801825835211973625643007, 170141183460469231731687303715884105727
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2^A135659(n) - 1.
G.f.: ( 127+16777088*x ) / ( (16777216*x-1)*(x-1) ). - R. J. Mathar, Apr 02 2012

A139483 Numbers n such that 24n+7 is prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 9, 11, 15, 18, 19, 20, 25, 26, 30, 31, 34, 38, 40, 41, 43, 44, 45, 51, 53, 54, 55, 58, 59, 60, 61, 64, 65, 69, 73, 74, 76, 78, 81, 83, 89, 93, 95, 96, 99, 104, 106, 110, 111, 113, 115, 116, 120, 128, 136, 138, 139, 141, 144, 146, 148, 149, 150, 151
Offset: 1

Views

Author

Artur Jasinski, Apr 23 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24 n + 7], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Range[0,200],PrimeQ[24#+7]&] (* Harvey P. Dale, Sep 02 2015 *)
  • PARI
    is(n)=isprime(24*n+7) \\ Charles R Greathouse IV, Jun 06 2017

A139640 Numbers of the form of 4x^2 - 4xy + 7y^2 (=24k+7) but not of the form 4x^2 + 4xy + 7y^2.

Original entry on oeis.org

151, 487, 727, 751, 1039, 1063, 1399, 1471, 1759, 1783, 2287, 2647, 2671, 2767, 3343, 3463, 3919, 4111, 4423, 4663, 4903, 4999, 5167, 5407, 5791, 6607, 6703, 6823, 7159, 7351, 7639, 7879, 8191, 8263, 8311, 8839, 9127, 9151, 9439, 9967, 10111, 10711
Offset: 1

Views

Author

Artur Jasinski, Apr 28 2008

Keywords

Comments

Numbers which occur in A107006 but not in A107005.

Crossrefs

Extensions

More terms from T. D. Noe, May 01 2008
Showing 1-10 of 16 results. Next