A033570 Pentagonal numbers with odd index: a(n) = (2*n+1)*(3*n+1).
1, 12, 35, 70, 117, 176, 247, 330, 425, 532, 651, 782, 925, 1080, 1247, 1426, 1617, 1820, 2035, 2262, 2501, 2752, 3015, 3290, 3577, 3876, 4187, 4510, 4845, 5192, 5551, 5922, 6305, 6700, 7107, 7526, 7957, 8400, 8855, 9322, 9801, 10292, 10795, 11310, 11837
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- John Elias, Illustration: Natural number stars.
- Leo Tavares, Illustration: Square Block Triangles
- Eric Weisstein's World of Mathematics, Pentagonal Number.
- Wikipedia, Pentagonal number.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..50], n-> (2*n+1)*(3*n+1)); # G. C. Greubel, Oct 12 2019
-
Magma
[(2*n+1)*(3*n+1) : n in [0..50]]; // Wesley Ivan Hurt, Dec 11 2016
-
Maple
A033570:=n->(2*n+1)*(3*n+1); seq(A033570(n), n=0..40); # Wesley Ivan Hurt, Mar 18 2014
-
Mathematica
LinearRecurrence[{3,-3,1},{1,12,35},50] Table[(2 n + 1) (3 n + 1), {n, 0, 50}] (* or *) CoefficientList[Series[(1 + 9 x + 2 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Dec 12 2016 *) PolygonalNumber[5,Range[1,101,2]] (* Harvey P. Dale, Aug 02 2021 *)
-
PARI
a(n)=(2*n+1)*(3*n+1) \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
[(2*n+1)*(3*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
Formula
G.f.: (1 + 9*x + 2*x^2)/(1-x)^3.
a(n) = a(n-1) + 12*n-1 for n > 0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = Sum_{i=1..2*(n+1)-1} 4*(n+1) - 2 - i. - Wesley Ivan Hurt, Mar 18 2014
E.g.f.: (1 + 11*x + 6*x^2)*exp(x). - G. C. Greubel, Oct 12 2019
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/(2*sqrt(3)) - 2*log(2) + 3*log(3)/2.
Sum_{n>=0} (-1)^n/a(n) = (1/sqrt(3) - 1/2)*Pi + log(2). (End)
Extensions
More terms from Ray Chandler, Dec 08 2011
Comments