A033594 a(n) = (n-1)*(2*n-1)*(3*n-1).
-1, 0, 15, 80, 231, 504, 935, 1560, 2415, 3536, 4959, 6720, 8855, 11400, 14391, 17864, 21855, 26400, 31535, 37296, 43719, 50840, 58695, 67320, 76751, 87024, 98175, 110240, 123255, 137256, 152279, 168360
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> (n-1)*(2*n-1)*(3*n-1) ); # G. C. Greubel, Mar 05 2020
-
Magma
[(n-1)*(2*n-1)*(3*n-1): n in [0..40]]; // Vincenzo Librandi, May 24 2011
-
Maple
A033594:=n->(n-1)*(2*n-1)*(3*n-1); seq(A033594(n), n=0..40); # Wesley Ivan Hurt, Feb 24 2014
-
Mathematica
Table[(n-1)*(2*n-1)*(3*n-1),{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *) LinearRecurrence[{4,-6,4,-1},{-1,0,15,80},40] (* Harvey P. Dale, Aug 23 2012 *)
-
PARI
vector(41, n, my(m=n-1); (m-1)*(2*m-1)*(3*m-1) ) \\ G. C. Greubel, Mar 05 2020
-
Sage
[-1]+[n^3*rising_factorial((n-1)/n, 3) for n in (1..40)] # G. C. Greubel, Mar 05 2020
Formula
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=-1, a(1)=0, a(2)=15, a(3)=80. - Harvey P. Dale, Aug 23 2012
G.f.: (-1 +4*x +9*x^2 +24*x^3)/(1-x)^4. - R. J. Mathar, Feb 06 2017
E.g.f.: (-1 + x + 7*x^2 + 6*x^3)*exp(x). - G. C. Greubel, Mar 05 2020
From Amiram Eldar, Jan 03 2021: (Start)
Sum_{n>=2} 1/a(n) = (7 - sqrt(3)*Pi - 16*log(2) + 9*log(3))/4.
Sum_{n>=2} (-1)^n/a(n) = Pi - 7/4 - sqrt(3)*Pi/2 + 2*log(2). (End)
Comments