A033876 Expansion of 1/(2*x) * (1/(1-4*x)^(3/2)-1).
3, 15, 70, 315, 1386, 6006, 25740, 109395, 461890, 1939938, 8112468, 33801950, 140408100, 581690700, 2404321560, 9917826435, 40838108850, 167890003050, 689232644100, 2825853840810, 11572544300460, 47342226683700, 193485622098600, 790066290235950, 3223470464162676
Offset: 0
Examples
G.f. = 3 + 15*x + 70*x^2 + 315*x^3 + 1386*x^4 + 6006*x^5 + 25740*x^6 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..250
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximum Clique.
- Eric Weisstein's World of Mathematics, Odd Graph.
Programs
-
Haskell
a033876 n = sum $ zipWith (!!) zss [0..n] where zss = take (n+1) $ g (take (n+1) (1 : [0,0..])) where g us = (take (n+1) $ g' us) : g (0 : init us) g' vs = last $ take (2 * n + 3) $ map snd $ iterate h (0, vs ++ reverse vs) h (p,ws) = (1 - p, drop p $ zipWith (+) ([0] ++ ws) (ws ++ [0])) -- Reinhard Zumkeller, Oct 25 2013
-
Magma
[(2*n+3)*Binomial(2*n+1, n) : n in [0..40]]; // Wesley Ivan Hurt, Nov 30 2017
-
Maple
[seq((n+2)*binomial(2*(n+2),n+2)/4, n=0..22)]; # Zerinvary Lajos, Jan 04 2007
-
Mathematica
Table[nn = 2 n + 1; (2 n + 1)! Coefficient[Series[Exp[x] (x^n/n!)^2/2, {x, 0, nn}], x^(2 n + 1)], {n, 30}] (* Geoffrey Critzer, Apr 19 2017 *) Table[n Binomial[2 n, n]/4, {n, 2, 20}] (* Eric W. Weisstein, Nov 30 2017 *) Table[(4^n Gamma[n + 3/2])/(Sqrt[Pi] Gamma[n + 1]), {n, 20}] (* Eric W. Weisstein, Nov 30 2017 *) CoefficientList[Series[((1 - 4 x)^(-3/2) - 1)/(2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 30 2017 *)
-
PARI
x='x+O('x^66); Vec( 1/(2*x) * (1/(1-4*x)^(3/2)-1) ) \\ Joerg Arndt, May 01 2013
Formula
a(n) = (2*n+3)*binomial(2*n+1, n). - Paul Boddington, Nov 03 2003
Equals n*A000984/4, n >= 2. - Zerinvary Lajos, Jan 04 2007
For n >= 1, 1/a(n-1) = Sum_{k>=0} binomial(2*k,k)/(4^(n+k)*(n+k+1)) = int(4*t^n/sqrt(1-4*t), t=0..1/4). - Groux Roland, Jan 17 2011
G.f.: - 1/(2*x) + G(0)/(4*x), where G(k)= 1 + 1/(1 - 2*x*(2*k+3)/(2*x*(2*k+3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 18 2013
a(n) = 2^(2*n+1)*binomial(n+3/2, 1/2). - Peter Luschny, May 06 2014
0 = a(n)*(16*a(n+1) - 2*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 17 2014
a(n-2) = n*binomial(2*n, n)/4 for n > 1. - Eric W. Weisstein, Nov 30 2017
G.f.: ((1 - 4*x)^(-3/2) - 1)/2 (by definition). - Eric W. Weisstein, Nov 30 2017
D-finite with recurrence: (n+1)*a(n) +2*(-2*n-3)*a(n-1)=0. - R. J. Mathar, Jan 28 2020
G.f.: (1F0(3/2;;4*x)-1)/(2*x). - R. J. Mathar, Jan 28 2020
From Amiram Eldar, Mar 04 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi/(3*sqrt(3)) - 2.
Sum_{n>=0} (-1)^n/a(n) = 2 - 8*log(phi)/sqrt(5), where phi is the golden ratio (A001622). (End)
From Mélika Tebni, Sep 04 2024: (Start)
E.g.f.: exp(2*x)*((3+8*x)*BesselI(0, 2*x) + (1+8*x)*BesselI(1, 2*x)). (End)
a(n) = 2^n*JacobiP(n+1, 1/2, -n-1, 3). - Peter Luschny, Jan 22 2025
Comments