A033999 a(n) = (-1)^n.
1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
Offset: 0
Examples
G.f. = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 + ...
References
- J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- S. K. Ghosal and J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
- Tanya Khovanova, Recursive Sequences
- Mathematics Stack Exchange, Convergence of series implies convergence of Cesàro mean, 2013.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- ProofWiki, Cesàro mean.
- Michael Somos, Rational Function Multiplicative Coefficients
- Eric Weisstein's World of Mathematics, Inverse Tangent
- Eric Weisstein's World of Mathematics, Stirling Transform
- Wikipedia, Ernesto Cesàro.
- Wikipedia, Grandi's series
- Wikipedia, +/-1-sequence
- Wikipedia, Dirichlet eta function
- Wikipédia, Lemme de Cesàro (in French).
- Index entries for linear recurrences with constant coefficients, signature (-1).
- Index to sequences related to inverse of cyclotomic polynomials
Crossrefs
Programs
-
Haskell
a033999 = (1 -) . (* 2) . (`mod` 2) a033999_list = cycle [1,-1] -- Reinhard Zumkeller, May 06 2012, Jan 02 2012
-
Magma
[(-1)^n : n in [0..100]]; // Wesley Ivan Hurt, Nov 19 2014
-
Maple
A033999 := n->(-1)^n: seq(A033999(n), n=0..100);
-
Mathematica
Table[(-1)^n, {n, 0, 88}] (* Alonso del Arte, Nov 30 2009 *) PadRight[{}, 89, {1, -1}] (* Arkadiusz Wesolowski, Sep 16 2012 *)
-
PARI
a(n)=1-2*(n%2) /* Jaume Oliver Lafont, Mar 20 2009 */
-
Python
def A033999(n): return -1 if n % 2 else 1 # Chai Wah Wu, May 24 2022
Formula
G.f.: 1/(1+x).
E.g.f.: exp(-x).
Linear recurrence: a(0)=1, a(n)=-a(n-1) for n>0. - Jaume Oliver Lafont, Mar 20 2009
Sum_{k=0..n} a(k) = A059841(n). - Jaume Oliver Lafont, Nov 21 2009
Sum_{k>=0} a(k)/(k+1) = log(2). - Jaume Oliver Lafont, Mar 30 2010
Euler transform of length 2 sequence [ -1, 1]. - Michael Somos, Mar 21 2011
Moebius transform is length 2 sequence [ -1, 2]. - Michael Somos, Mar 21 2011
a(n) = -b(n) where b(n) = multiplicative with b(2^e) = -1 if e>0, b(p^e) = 1 if p>2. - Michael Somos, Mar 21 2011
a(n) = a(-n) = a(n + 2) = cos(n * Pi). a(n) = c_2(n) if n>1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011
a(n) = (1/2)*Product_{k=0..2*n-1} 2*cos((2*k+1)*Pi/(4*n)), n >= 1. See the product given in the Oct 21 2013 formula comment in A056594, and replace there n -> 2*n. - Wolfdieter Lang, Oct 23 2013
D.g.f.: (2^(1-s)-1)*zeta(s) = -eta(s) (the Dirichlet eta function). - Ralf Stephan, Mar 27 2015
From Ilya Gutkovskiy, Aug 17 2016: (Start)
a(n) = T_n(-1), where T_n(x) are the Chebyshev polynomials of the first kind.
Binomial transform of A122803. (End)
a(n) = exp(i*Pi*n) = exp(-i*Pi*n). - Carauleanu Marc, Sep 15 2016
a(n) = Sum_{k=0..n} (-1)^k*A063007(n, k), n >= 0. - Wolfdieter Lang, Sep 13 2016
Comments