A034841 a(n) = (n^2)! / (n!)^n.
1, 1, 6, 1680, 63063000, 623360743125120, 2670177736637149247308800, 7363615666157189603982585462030336000, 18165723931630806756964027928179555634194028454000000, 53130688706387569792052442448845648519471103327391407016237760000000000
Offset: 0
Keywords
Links
- Alois P. Heinz and Tilman Piesk, Table of n, a(n) for n = 0..26 (first 20 terms from Alois P. Heinz)
- Noah Lordi, Maedee Trank-Greene, Akira Kyle, and Joshua Combes, Quantum permutation puzzles with indistinguishable particles, arXiv:2410.22287 [quant-ph], 2024. See p. 8.
Crossrefs
Programs
-
Magma
[Factorial(n^2) / Factorial(n)^n: n in [0..10]]; // Vincenzo Librandi, Oct 29 2014
-
Maple
a:= n-> (n^2)! / (n!)^n: seq(a(n), n=0..10); # Alois P. Heinz, Jul 24 2012
-
Mathematica
Prepend[Table[nn = n^2;nn! Coefficient[Series[(x^n/n!)^n, {x, 0, nn}], x^nn], {n, 1, 15}], 1] (* Geoffrey Critzer, Mar 08 2015 *)
-
PARI
a(n) = (n^2)! / (n!)^n; \\ Michel Marcus, Oct 28 2014
Formula
Using a higher order version of Stirling's formula (the "standard" formula appears in A000142) we have the asymptotic expression: a(n) ~ sqrt(2*Pi) * e^(-1/12) * n^(n^2 - n/2 + 1) / (2*Pi)^(n/2). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
a(n) = Product_{k=1..n} binomial(k*n, n). - Vaclav Kotesovec, Mar 10 2019
Extensions
a(0)=1 prepended by Tilman Piesk, Oct 28 2014
Comments