cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A093483 a(1) = 2; for n>1, a(n) = smallest integer > a(n-1) such that a(n) + a(i) + 1 is prime for all 1 <= i <= n-1.

Original entry on oeis.org

2, 4, 8, 14, 38, 98, 344, 22268, 79808, 187124, 347978, 2171618, 4219797674, 98059918334, 22518029924768, 54420534706118, 252534792143648
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2004

Keywords

Comments

a(i) == 2 mod 6 for i > 2. - Walter Kehowski, Jun 03 2006
a(i) == either 8 or 14 (mod 30) for i > 2. - Robert G. Wilson v, Oct 16 2012
The Hardy-Littlewood k-tuple conjecture would imply that this sequence is infinite. Note that, for n > 2, a(n)+3 and a(n)+5 are both primes, so a proof that this sequence is infinite would also show that there are infinitely many twin primes. - N. J. A. Sloane, Apr 21 2007
No more terms less than 7*10^12. - David Wasserman, Apr 03 2007

Examples

			a(5) = 38 because 38+2+1, 38+4+1, 38+8+1 and 38+14+1 are all prime.
		

Crossrefs

Programs

  • Haskell
    a093483 n = a093483_list !! (n-1)
    a093483_list = f ([2..7] ++ [8,14..]) [] where
       f (x:xs) ys = if all (== 1) $ map (a010051 . (+ x)) ys
                        then x : f xs ((x+1):ys) else f xs ys
    -- Reinhard Zumkeller, Dec 11 2011
  • Maple
    EP:=[2,4]: P:=[]: for w to 1 do for n from 1 to 800*10^6 do s:=6*n+2; Q:=map(z-> z+s+1); if andmap(isprime,Q) then EP:=[op(EP),s]; P:=[op(P),op(Q)] fi; od od; EP; P: # Walter Kehowski, Jun 03 2006
  • Mathematica
    f[1] = 2; f[2] = 4; f[3] = 8; f[n_] := f[n] = Block[{lst = Array[f, n - 1], k = f[n - 1] + 7}, While[ Union[ PrimeQ[k + lst]] != {True}, k += 6]; k-1]; Array[f, 13] (* Robert G. Wilson v, Oct 16 2012 *)

Extensions

a(7) from Jonathan Vos Post, Mar 22 2006
More terms from Joshua Zucker, Jul 24 2006
Edited and extended to a(14) by David Wasserman, Apr 03 2007
a(15)-a(17) from Don Reble, added by N. J. A. Sloane, Sep 18 2012

A219761 a(1) = 1; for n>1, a(n) = smallest integer > a(n-1) such that a(n)*a(n-i)+1 is prime for all 0 <= i <= n-1.

Original entry on oeis.org

1, 2, 6, 156, 4260, 117306, 160650, 13937550, 32742516, 3306719796, 7746764190
Offset: 1

Views

Author

N. J. A. Sloane, Dec 01 2012

Keywords

Examples

			After a(1)=1, a(2)=2, a(3)=6, we want the smallest m>6 such that 1+m, 1+2m, 1+6m and 1+m^2 are all prime: this is m = 156 = a(4).
		

References

Crossrefs

Programs

  • Mathematica
    f[a_List] := Block[{m = a, k = a[[-1]] + 6}, While[ Union@ PrimeQ[k*Join[m, {k}] + 1] != {True}, k += 6]; k]; s = {1, 2, 6}; Do[ Print[{n, a = f[s]}]; s = Append[s, a], {n, 4, 9}] (* Robert G. Wilson v, Dec 03 2012 *)

Extensions

a(8) and a(9) from Robert G. Wilson v, Dec 03 2012
a(10) and a(11) from Robert G. Wilson v, Dec 04 2012

A219953 a(1) = 1; for n > 1, a(n) = smallest integer > a(n-1) such that a(n)*a(i)+1 is semiprime for all 1 <= i <= n-1.

Original entry on oeis.org

1, 3, 8, 38, 86, 318, 504, 3600, 8132, 83160, 116850, 202272, 399126, 6190086, 8756916, 25253676, 309709400, 1112878446, 1478724036, 11062089360, 97331025386
Offset: 1

Views

Author

Jonathan Vos Post, Dec 01 2012

Keywords

Comments

This is to A034881 as semiprimes A001358 are to primes A000040.
a(20) > 6*10^9. - Giovanni Resta, Jul 26 2015

Examples

			a(1) = 1 by definition.
a(2) = 3: 3 > 1, and 1*3 + 1 = 4 = 2^2 is semiprime.
a(3) = 8: 8 > 3, and 1*8 + 1 = 9 = 3^2 is semiprime, and 3*8 + 1 = 25 = 5^2 is semiprime.
a(4) = 38: 38 > 8, and 1*38 + 1 = 39 = 3*13 is semiprime, and 3*38 + 1 = 115 = 5*23 is semiprime, and 8*38 + 1 = 305 = 5*61 is semiprime.
From _Michel Marcus_, Jul 26 2015: (Start)
The resulting semiprimes are:
    4;
    9,  25;
   39, 115,  305;
   87, 259,  689,  3269;
  319, 955, 2545, 12085, 27349;
  ...
(End)
		

Crossrefs

Programs

  • Maple
    A219953 := proc(n)
        option remember;
        if n= 1 then
            1;
        else
            for a from procname(n-1)+1 do
                issp := true ;
                for i from 1 to n-1 do
                    if numtheory[bigomega]( a*procname(n-i)+1) = 2 then
                        ;
                    else
                        issp := false;
                        break ;
                    end if;
                end do:
                if issp then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Dec 15 2012
  • Mathematica
    a = {1}; Do[k = a[[n - 1]] + 1; While[! AllTrue[(k a[[n - #]] + 1) & /@ Range@ (n - 1), Total[Last /@ FactorInteger@ #] == 2 &], k++]; AppendTo[a, k], {n, 2, 13}]; a (* Michael De Vlieger, Jul 26 2015, Version 10 *)
  • PARI
    ok(v, n, k) = {v[n] = k; for (j=1, n-1, if (bigomega(1+v[n]*v[j]) != 2, return (0));); return (1);}
    lista(nn) = {print1(k=1, ", "); v = [k]; for (n=2, nn, k = v[n-1]+1; v = concat(v, k); while (! ok(v, n, k), k++); v[n] = k; print1(k, ", "););} \\ Michel Marcus, Jul 26 2015

Extensions

a(14)-a(17) from Luke March, Jul 26 2015
a(18)-a(19) from Giovanni Resta, Jul 26 2015
a(20)-a(21) from Tyler Busby, Jan 31 2023

A127903 Primes arising in A093483.

Original entry on oeis.org

7, 11, 13, 17, 19, 23, 41, 43, 47, 53, 101, 103, 107, 113, 137, 347, 349, 353, 359, 383, 443, 22271, 22273, 22277, 22283, 22307, 22367, 22613, 79811, 79813, 79817, 79823, 79847, 79907, 80153, 102077, 187127, 187129, 187133, 187139, 187163, 187223
Offset: 1

Views

Author

Jonathan Vos Post, Apr 05 2007

Keywords

Crossrefs

Extensions

Data corrected by Giovanni Resta, Jun 19 2016

A274694 Variation on Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a prime power.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 211050, 3848880, 20333040, 125038830, 2978699430
Offset: 1

Views

Author

Robert C. Lyons, Jul 02 2016

Keywords

Comments

a(1) = 1; for n>1, a(n) = smallest integer > a(n-1) such that a(n)*a(i)+1 is a prime power for all 1 <= i <= n-1.

Examples

			After a(1)=1, a(2)=2, a(3)=3, we want m, the smallest number > 3 such that m+1, 2m+1 and 3m+1 are all prime powers: this is m = 4 = a(4).
		

Crossrefs

Programs

  • Sage
    seq = [1]
    prev_element = 1
    max_n = 8
    for n in range(2, max_n+1):
        next_element = prev_element + 1
        while True:
            all_match = True
            for element in seq:
                x = element * next_element + 1
                if not x.is_prime_power():
                    all_match = False
                    break
            if all_match:
                seq.append( next_element )
                break
            next_element += 1
        prev_element = next_element
    print(seq)
Showing 1-5 of 5 results.