A034956 Divide natural numbers in groups with prime(n) elements and add together.
3, 12, 40, 98, 253, 455, 850, 1292, 2047, 3335, 4495, 6623, 8938, 11180, 14335, 18815, 24249, 28731, 35845, 42884, 49348, 59408, 69139, 81791, 98164, 112211, 124939, 141026, 155434, 173681, 210439, 233966, 263040, 286062, 328098, 355152, 393442, 434558, 472777
Offset: 1
Keywords
Examples
{1,2} #2 S=3; {3,4,5} #3 S=12; {6,7,8,9,10} #5 S=40; {11,12,13,14,15,16,17} #7 S=98.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
s:= proc(n) s(n):= `if`(n<1, 0, s(n-1)+ithprime(n)) end: a:= n-> (t-> t(s(n))-t(s(n-1)))(i-> i*(i+1)/2): seq(a(n), n=1..40); # Alois P. Heinz, Mar 22 2023
-
Mathematica
Module[{nn=50,pr},pr=Prime[Range[nn]];Total/@TakeList[Range[ Total[ pr]], pr]](* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Oct 01 2017 *)
-
Python
from itertools import islice from sympy import nextprime def A034956_gen(): # generator of terms a, p = 0, 2 while True: yield p*((a<<1)+p+1)>>1 a, p = a+p, nextprime(p) A034956_list = list(islice(A034956_gen(),20)) # Chai Wah Wu, Mar 22 2023
Formula
From Hieronymus Fischer, Sep 27 2012: (Start)
If we define A007504(0) := 0, then the formulas above are also true for n=1.
Comments